Search results for "iCCA"

showing 10 items of 161 documents

Survival and gene expression under different temperature and humidity regimes in ants

2017

Short term variation in environmental conditions requires individuals to adapt via changes in behavior and/or physiology. In particular variation in temperature and humidity are common, and the physiological adaptation to changes in temperature and humidity often involves alterations in gene expression, in particular that of heat-shock proteins. However, not only traits involved in the resistance to environmental stresses, but also other traits, such as immune defenses, may be influenced indirectly by changes in temperature and humidity. Here we investigated the response of the ant F. exsecta to two temperature regimes (20 degrees C & 25 degrees C), and two humidity regimes (50% & 75%), for…

0106 biological sciences0301 basic medicineAtmospheric ScienceympäristöAcclimatizationGene Expressionlcsh:MedicinemuutosALFALFA LEAFCUTTING BEEBiochemistryImmune Receptors01 natural sciencesEndocrinologyACCLIMATIONmuurahaisetGene expressionMedicine and Health SciencesIMMUNE-RESPONSEInsulinTRANSCRIPTIONgeeniekspressiolcsh:SciencePOPULATIONHeat-Shock ProteinsProtein MetabolismsopeutuminenPrincipal Component Analysiseducation.field_of_studyImmune System ProteinsMultidisciplinaryBehavior AnimalEcologyolosuhteetTemperaturefood and beveragesANThumanitiesInsectsimmuunijärjestelmä1181 Ecology evolutionary biologyPhysical SciencesMEGACHILE-ROTUNDATAlämpötilaympäristönmuutoksetResearch ArticleNutrient and Storage ProteinsSignal TransductionArthropodaImmunologyPopulationZoologyBiology010603 evolutionary biologyAcclimatization03 medical and health sciencesMeteorologyTwo temperatureStress PhysiologicalGeneticsAnimalseducationGeneProportional Hazards ModelsDiabetic EndocrinologyAntsBEAUVERIA-BASSIANAGene Expression Profilinglcsh:ROrganismshumidityBiology and Life SciencesProteinsHumiditytemperatureHumidityEigenvaluesCell BiologyDESICCATIONInvertebratesHymenopteraHormonesMetabolismAlgebra030104 developmental biologyGene Expression RegulationLinear AlgebraDROSOPHILA-MELANOGASTERkosteusEarth Sciencesgene expressionta1181lcsh:QFormica exsectaDesiccationRESISTANCEMathematics
researchProduct

Anhydrobiosis in yeasts: Glutathione synthesis by yeast Ogataea (Hansenula) polymorpha cells after their dehydration-rehydration.

2019

The possibility of using active dry microbial preparations in biotechnological processes is essential for the development of new modern industrial technologies. In this study, we show the possibility of obtaining such preparations of the genetically engineered yeast strain Ogataea (Hansenula) polymorpha with glutathione overproduction. Special pre-treatment involving the gradual rehydration of dry cells in water vapour led to the restoration/reactivation of almost 100% of dehydrated cells. Furthermore, dry cells do not lose their viability during storage at room temperatures. Application of dry cells as the inoculum provides the same levels of glutathione synthesis as that of a native yeast…

0106 biological sciences0301 basic medicineBioengineeringGlutathione synthesis01 natural sciencesApplied Microbiology and BiotechnologyGlutathione Synthase03 medical and health scienceschemistry.chemical_compound010608 biotechnologymedicineDehydrationDesiccationOverproductionCryptobiosisMicrobial ViabilityChemistryGeneral MedicineGlutathionemedicine.diseaseGlutathioneYeast030104 developmental biologyDehydration rehydrationBasic-Leucine Zipper Transcription FactorsBiochemistrySaccharomycetalesFluid TherapyGenetic EngineeringHansenula polymorphaBiotechnologyJournal of biotechnology
researchProduct

Microbial symbionts expanding or constraining abiotic niche space in insects

2020

In addition to their well-studied contributions to their host’s nutrition, digestion, and defense, microbial symbionts of insects are increasingly found to affect their host’s response toward abiotic stressors. In particular, symbiotic microbes can reduce or enhance tolerance to temperature extremes, improve desiccation resistance by aiding cuticle biosynthesis and sclerotization, and detoxify heavy metals. As such, individual symbionts or microbial communities can expand or constrain the abiotic niche space of their host and determine its adaptability to fluctuating environments. In light of the increasing impact of humans on climate and environment, a better understanding of host-microbe …

0106 biological sciences0301 basic medicineEntomologyInsectamedia_common.quotation_subjectAcclimatizationNicheInsectBiology010603 evolutionary biology01 natural sciencesAdaptability03 medical and health sciencesAnimal ShellsStress PhysiologicalMetals HeavyNitrogen FixationAnimalsSymbiosisEcology Evolution Behavior and SystematicsEcosystemmedia_commonAbiotic componentResistance (ecology)Host Microbial InteractionsHost (biology)EcologyMicrobiotafungiTemperatureDroughts030104 developmental biology13. Climate actionInsect ScienceDesiccationCurrent Opinion in Insect Science
researchProduct

Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions

2018

International audience; Terrestrial arthropods achieve waterproofing by a layer of cuticular hydrocarbons (CHCs). At the same time, CHCs also serve as communication signals. To maintain waterproofing under different climate conditions, insects adjust the chemical composition of their CHC layer, but this may affect the communication via CHCs. The detailed acclimatory changes of CHCs and how these influence their physical properties are still unknown. Here, we studied acclimation in two closely related ant species with distinct CHC profiles, Myrmica rubra and Myrmica ruginodis, in response to constant or fluctuating temperature and humidity regimes. We measured how acclimation affected CHC co…

0106 biological sciences0301 basic medicineHot TemperaturePhysiologyDesiccation resistanceAcclimatizationClimateClimate Change[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Phenotypic plasticityAquatic ScienceMyrmica rubra010603 evolutionary biology01 natural sciencesAcclimatizationDrought survivalCHCs03 medical and health sciencesSpecies SpecificityAnimalsRelative humidityMyrmica ruginodisSolid contentMicrorheologyMolecular BiologyEcology Evolution Behavior and Systematicschemistry.chemical_classificationPhenotypic plasticitybiologyAntsEcologyViscosityHumidityHumidity15. Life on landbiology.organism_classificationHydrocarbons[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology030104 developmental biologyHydrocarbonchemistry13. Climate actionInsect ScienceAnimal Science and Zoology[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/BioclimatologyRheology[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

The Role of Phospholipase D and MAPK Signaling Cascades in the Adaption of Lichen Microalgae to Desiccation: Changes in Membrane Lipids and Phosphopr…

2016

Classically, lichen phycobionts are described as poikilohydric organisms able to undergo desiccation due to the constitutive presence of molecular protection mechanisms. However, little is known about the induction of cellular responses in lichen phycobionts during drying. The analysis of the lipid composition of the desiccated lichen microalga Asterochloris erici revealed the unusual accumulation of highly polar lipids (oligogalactolipids and phosphatidylinositol), which prevents the fusion of membranes during stress, but also the active degradation of cone-shaped lipids (monogalactosyldiacylglycerol and phosphatidylethanolamine) to stabilize membranes in desiccated cells. The level of pho…

0106 biological sciences0301 basic medicineMAPK/ERK pathwayLichensPhysiologyMAP Kinase Signaling SystemMembrane lipidsPlant ScienceBiology01 natural sciencesDesiccation toleranceDephosphorylation03 medical and health scienceschemistry.chemical_compoundMembrane LipidsChlorophytaOsmotic PressureMicroalgaePhospholipase DPhosphorylationProtein kinase ADehydrationPhospholipase DKinaseCell BiologyGeneral MedicinePhosphatidic acidPhosphoproteinsAdaptation Physiological030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlantcell physiology
researchProduct

Dehydration rate determines the degree of membrane damage and desiccation tolerance in bryophytes.

2016

Desiccation tolerant (DT) organisms are able to withstand an extended loss of body water and rapidly resume metabolism upon rehydration. This ability, however, is strongly dependent on a slow dehydration rate. Fast dehydration affects membrane integrity leading to intracellular solute leakage upon rehydration and thereby impairs metabolism recovery. We test the hypothesis that the increased cell membrane damage and membrane permeability observed under fast dehydration, compared with slow dehydration, is related to an increase in lipid peroxidation. Our results reject this hypothesis because following rehydration lipid peroxidation remains unaltered, a fact that could be due to the high incr…

0106 biological sciences0301 basic medicineMembrane permeabilityPhysiologyPlant ScienceBryophytamedicine.disease_cause01 natural sciencesFluorescenceLipid peroxidationCell membraneDesiccation tolerance03 medical and health scienceschemistry.chemical_compoundStress PhysiologicalBotanyGeneticsmedicineHydroxybenzoatesDehydrationDesiccationDehydrationCell MembraneWaterCell BiologyGeneral Medicinemedicine.diseaseOxygenOxidative Stress030104 developmental biologymedicine.anatomical_structurechemistryBiophysicsLipid PeroxidationDesiccationReactive Oxygen SpeciesIntracellularOxidative stressPlant Shoots010606 plant biology & botanyPhysiologia plantarum
researchProduct

How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile

2017

1.Organisms from temperate zones are exposed to seasonal changes and must be able to cope with a wide range of climatic conditions. Especially ectotherms, including insects, are at risk to desiccate under dry and warm conditions, the more so given the changing climate. 2.To adjust to current conditions, organisms acclimate through changes in physiology, morphology and/or behaviour. Insects protect themselves against desiccation through a layer of cuticular hydrocarbons (CHC) on their body surface. Hence, acclimation may also affect the CHC profile, changing their waterproofing capacity under different climatic conditions. 3.Here, we investigated the acclimation response of two Temnothorax a…

0106 biological sciences0301 basic medicinePhenotypic plasticityTemnothoraxbiologyEcologyRange (biology)biology.organism_classification010603 evolutionary biology01 natural sciencesAcclimatizationBeneficial acclimation hypothesis03 medical and health sciences030104 developmental biologyEctothermTemperate climateDesiccationEcology Evolution Behavior and SystematicsFunctional Ecology
researchProduct

2018

BackgroundThe insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs) depend on their chain length and desaturation number.DrosophilaCH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes.MethodsThe link between desiccation resistance and CH profile remains unclear, so we tested…

0106 biological sciences0301 basic medicinemedia_common.quotation_subjectCuticleArthropod cuticleInsect010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesmedicineDehydrationDrosophilaWater contentmedia_commonbiologyChemistryGeneral NeuroscienceGeneral Medicinebiology.organism_classificationmedicine.diseaseCell biology030104 developmental biologyDrosophila melanogasterGeneral Agricultural and Biological SciencesDesiccationPeerJ
researchProduct

Ancient symbiosis confers desiccation resistance to stored grain pest beetles

2017

AbstractMicrobial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, e.g. temperature and humidity. Here we report on an ancient (~400 Mya) clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated withgrain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and …

0106 biological sciences0301 basic medicinemedia_common.quotation_subjectOryzaephilus surinamensisContext (language use)Insect010603 evolutionary biology01 natural sciences03 medical and health sciencesBotanyGeneticsAnimalsDesiccationSymbiosisEcology Evolution Behavior and SystematicsPhylogenymedia_commonAbiotic componentbiologyEcologyHost Microbial InteractionsEcologyBacteroidetesfungifood and beveragesSilvanidaebiochemical phenomena metabolism and nutritionbiology.organism_classification030104 developmental biologyBostrichidaeWeevilsPEST analysisDesiccation
researchProduct

Analysis of biosynthesis and composition of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant

2020

AbstractCuticular wax plays an important role in fruits in protection against environmental stresses and desiccation. In this study, biosynthesis and chemical composition of cuticular wax in wild type (WT) bilberry fruit was studied during development and compared with its natural glossy type (GT) mutant. The cuticular wax load in GT fruit was comparable to WT fruit. In both fruits, triterpenoids were the dominant wax compounds with decreasing proportion during the fruit development accompanied with increasing proportion of aliphatic compounds. Gene expression studies supported the pattern of compound accumulation during fruit development. GenesCER26-like, FAR2, CER3-like, LTP, MIXTA, andBA…

0106 biological sciences0303 health sciencesWaxBilberrybiologyChemistryWild typefood and beveragesBerryVaccinium myrtillusbiology.organism_classification01 natural sciencesEpicuticular wax03 medical and health sciencesvisual_artBotanyvisual_art.visual_art_mediumComposition (visual arts)Desiccation030304 developmental biology010606 plant biology & botany
researchProduct