Search results for "iGen"

showing 10 items of 13400 documents

Acoustic detection and classification of river boats

2011

We present a robust algorithm to detect the arrival of a boat of a certain type when other background noises are present. It is done via the analysis of its acoustic signature against an existing database of recorded and processed acoustic signals. We characterize the signals by the distribution of their energies among blocks of wavelet packet coefficients. To derive the acoustic signature of the boat of interest, we use the Best Discriminant Basis method. The decision is made by combining the answers from the Linear Discriminant Analysis (LDA) classifier and from the Classification and Regression Trees (CART) that is also accompanied with an additional unit, called Aisles, that reduces fal…

ta113Acoustics and UltrasonicsNetwork packetbusiness.industryPattern recognitionLinear discriminant analysisRegressionWaveletDiscriminantAcoustic signatureProcess controlArtificial intelligencebusinessClassifier (UML)MathematicsApplied Acoustics
researchProduct

Anomaly detection approach to keystroke dynamics based user authentication

2017

Keystroke dynamics is one of the authentication mechanisms which uses natural typing pattern of a user for identification. In this work, we introduced Dependence Clustering based approach to user authentication using keystroke dynamics. In addition, we applied a k-NN-based approach that demonstrated strong results. Most of the existing approaches use only genuine users data for training and validation. We designed a cross validation procedure with artificially generated impostor samples that improves the learning process yet allows fair comparison to previous works. We evaluated the methods using the CMU keystroke dynamics benchmark dataset. Both proposed approaches outperformed the previou…

ta113AuthenticationpääsynvalvontaComputer scienceaccess control02 engineering and technologycomputer.software_genreKeystroke dynamicstodentaminen020204 information systems0202 electrical engineering electronic engineering information engineeringBenchmark (computing)Unsupervised learningauthentication020201 artificial intelligence & image processingAnomaly detectionData miningtietoturvadata securitycomputer
researchProduct

Developing cloud business models: A case study on cloud gaming

2011

Cloud computing offers new ways for firms to operate in the global market so that even small firms can compete in markets traditionally dominated by multinational corporations. A case study considers how, over ten years, a small firm developed a successful business model to compete in computer gaming. peerReviewed

ta113Competitive intelligenceComputingMilieux_THECOMPUTINGPROFESSIONBusiness processbusiness.industrySoftware as a serviceCloud gamingcloud computingCloud computingBusiness modelpienyrityksetGlobalizationpilvipalvelutCommerceMultinational corporationcomputer gamesBusinessbusiness modelssmall firmsSoftwaretietokonepelitIEEE Software
researchProduct

DOBRO : a prediction error correcting robot under drifts

2016

We propose DOBRO, a light online learning module, which is equipped with a smart correction policy helping making decision to correct or not the given prediction depending on how likely the correction will lead to a better prediction performance. DOBRO is a standalone module requiring nothing more than a time series of prediction errors and it is flexible to be integrated into any black-box model to improve its performance under drifts. We performed evaluation in a real-world application with bus arrival time prediction problem. The obtained results show that DOBRO improved prediction performance significantly meanwhile it did not hurt the accuracy when drift does not happen.

ta113Concept driftComputer scienceMean squared prediction error02 engineering and technologyARIMAconcept drifton-line prediction error correction020204 information systems0202 electrical engineering electronic engineering information engineeringRobot020201 artificial intelligence & image processingAutoregressive integrated moving averageSimulation
researchProduct

A Cooperative Coevolution Framework for Parallel Learning to Rank

2015

We propose CCRank, the first parallel framework for learning to rank based on evolutionary algorithms (EA), aiming to significantly improve learning efficiency while maintaining accuracy. CCRank is based on cooperative coevolution (CC), a divide-and-conquer framework that has demonstrated high promise in function optimization for problems with large search space and complex structures. Moreover, CC naturally allows parallelization of sub-solutions to the decomposed sub-problems, which can substantially boost learning efficiency. With CCRank, we investigate parallel CC in the context of learning to rank. We implement CCRank with three EA-based learning to rank algorithms for demonstration. E…

ta113Cooperative coevolutionTheoretical computer scienceLearning to RankComputer sciencebusiness.industryRank (computer programming)Genetic ProgrammingEvolutionary algorithmContext (language use)Genetic programmingImmune ProgrammingMachine learningcomputer.software_genreEvolutionary computationComputer Science ApplicationsComputational Theory and MathematicsCooperative CoevolutionInformation RetrievalBenchmark (computing)Learning to rankArtificial intelligencebusinesscomputerInformation SystemsIEEE Transactions on Knowledge and Data Engineering
researchProduct

Gear classification and fault detection using a diffusion map framework

2015

This article proposes a system health monitoring approach that detects abnormal behavior of machines. Diffusion map is used to reduce the dimensionality of training data, which facilitates the classification of newly arriving measurements. The new measurements are handled with Nyström extension. The method is trained and tested with real gear monitoring data from several windmill parks. A machine health index is proposed, showing that data recordings can be classified as working or failing using dimensionality reduction and warning levels in the low dimensional space. The proposed approach can be used with any system that produces high-dimensional measurement data. peerReviewed

ta113Diffusion (acoustics)Training setta214Computer scienceDimensionality reductiondiffusion mapExtension (predicate logic)computer.software_genreFault detection and isolationfault detectionsystem health monitoringArtificial IntelligenceSignal ProcessingComputer Vision and Pattern RecognitionData miningCluster analysiscomputerSoftwareCurse of dimensionalityclustering
researchProduct

Visual-manual in-car tasks decomposed: text entry and kinetic scrolling as the main sources of visual distraction

2013

Distraction effects of in-car tasks with a touch screen based navigation system user interface were studied in a driving simulator experiment with eye tracking. The focus was to examine which particular in-car task components visually distract drivers the most. The results indicate that all of the visual-manual in-car tasks led to increased levels of experienced demands and to lower driving speeds. The most significant finding was that text entry and kinetic scrolling of lists were the main sources of visual distraction whereas simple selection tasks with familiar target locations led to least severe distraction effects.

ta113Focus (computing)InformationSystems_INFORMATIONINTERFACESANDPRESENTATION(e.g.HCI)Computer sciencebusiness.industryDriving simulatorNavigation systemTask (computing)ScrollingDistractionEye trackingComputer visionArtificial intelligenceUser interfacebusiness
researchProduct

Investigating serendipity in recommender systems based on real user feedback

2018

Over the past several years, research in recommender systems has emphasized the importance of serendipity, but there is still no consensus on the definition of this concept and whether serendipitous items should be recommended is still not a well-addressed question. According to the most common definition, serendipity consists of three components: relevance, novelty and unexpectedness, where each component has multiple variations. In this paper, we looked at eight different definitions of serendipity and asked users how they perceived them in the context of movie recommendations. We surveyed 475 users of the movie recommender system, MovieLens regarding 2146 movies in total and compared tho…

ta113Information retrievalComputer scienceSerendipityuutuudetpalautesuosittelujärjestelmätNoveltyserendipityContext (language use)02 engineering and technologyVariation (game tree)Recommender systemunexpectednessPreferenceMovieLenssattumanovelty020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingRelevance (information retrieval)relevancerecommender systemsProceedings of the 33rd Annual ACM Symposium on Applied Computing
researchProduct

A Hybrid Multigroup Coclustering Recommendation Framework Based on Information Fusion

2015

Collaborative Filtering (CF) is one of the most successful algorithms in recommender systems. However, it suffers from data sparsity and scalability problems. Although many clustering techniques have been incorporated to alleviate these two problems, most of them fail to achieve further significant improvement in recommendation accuracy. First of all, most of them assume each user or item belongs to a single cluster. Since usually users can hold multiple interests and items may belong to multiple categories, it is more reasonable to assume that users and items can join multiple clusters (groups), where each cluster is a subset of like-minded users and items they prefer. Furthermore, most of…

ta113Information retrievalComputer sciencebusiness.industrydata miningRecommender systemcomputer.software_genreTheoretical Computer ScienceInformation fusionKnowledge baseArtificial IntelligenceCollaborative FilteringScalabilityCluster (physics)Collaborative filteringLearning to rankData miningrecommender systemsCluster analysisbusinesscomputercluster analysisACM Transactions on Intelligent Systems and Technology
researchProduct

Cross-Domain Recommendations with Overlapping Items

2016

In recent years, there has been an increasing interest in cross-domain recommender systems. However, most existing works focus on the situation when only users or users and items overlap in different domains. In this paper, we investigate whether the source domain can boost the recommendation performance in the target domain when only items overlap. Due to the lack of publicly available datasets, we collect a dataset from two domains related to music, involving both the users’ rating scores and the description of the items. We then conduct experiments using collaborative filtering and content-based filtering approaches for validation purpose. According to our experimental results, the sourc…

ta113Information retrievaldata collectionComputer sciencesuosittelujärjestelmät02 engineering and technologyDomain (software engineering)020204 information systemscollaborative filtering0202 electrical engineering electronic engineering information engineeringcross-domain recommendationscontent-based filtering020201 artificial intelligence & image processingrecommender systems
researchProduct