Search results for "interpretability"
showing 10 items of 32 documents
Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation.
2020
Classification approaches that allow to extract logical rules such as decision trees are often considered to be more interpretable than neural networks. Also, logical rules are comparatively easy to verify with any possible input. This is an important part in systems that aim to ensure correct operation of a given model. However, for high-dimensional input data such as images, the individual symbols, i.e. pixels, are not easily interpretable. Therefore, rule-based approaches are not typically used for this kind of high-dimensional data. We introduce the concept of first-order convolutional rules, which are logical rules that can be extracted using a convolutional neural network (CNN), and w…
Automatic Content Analysis of Computer-Supported Collaborative Inquiry-Based Learning Using Deep Networks and Attention Mechanisms
2020
Computer-supported collaborative inquiry-based learning (CSCIL) represents a form of active learning in which students jointly pose questions and investigate them in technology-enhanced settings. Scaffolds can enhance CSCIL processes so that students can complete more challenging problems than they could without scaffolds. Scaffolding CSCIL, however, would optimally adapt to the needs of a specific context, group, and stage of the group's learning process. In CSCIL, the stage of the learning process can be characterized by the inquiry-based learning (IBL) phase (orientation, conceptualization, investigation, conclusion, and discussion). In this presentation, we illustrate the potential of a…
Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory
2021
Abstract This study undertook a comprehensive application of 15 data mining (DM) models, most of which have, thus far, not been commonly used in environmental sciences, to predict land susceptibility to water erosion hazard in the Kahorestan catchment, southern Iran. The DM models were BGLM, BGAM, Cforest, CITree, GAMS, LRSS, NCPQR, PLS, PLSGLM, QR, RLM, SGB, SVM, BCART and BTR. We identified 18 factors usually considered as key controls for water erosion, comprising 10 factors extracted from a digital elevation model (DEM), three indices extracted from Landsat 8 images, a sediment connectivity index (SCI) and three other intrinsic factors. Three indicators consisting of MAE, MBE, RMSE, and…
Frailty Status Typologies in Spanish Older Population: Associations with Successful Aging
2020
Background: Defining frailty typologies would contribute to guiding specific care interventions. These typologies could additionally be related to different health outcomes. This study aims at identifying subgroups of frail older adults based on the physical frailty phenotype and examining the relationships of these frailty profiles with quality of life and perceived health. Methods: This study relies on data from the SHARE project, namely a representative sample of 1765 Spanish-dwelling older adults identified as frail or pre-frail. Analysis included general descriptive statistics, exploratory latent class analysis (LCA) to determine the number of frailty subgroups, and LCA with covariates…
Minimum information about a biofilm experiment (MIABiE): standards for reporting experiments and data on sessile microbial communities living at inte…
2014
The minimum information about a biofilm experiment (MIABiE) initiative has arisen from the need to find an adequate and scientifically sound way to control the quality of the documentation accompanying the public deposition of biofilm-related data, particularly those obtained using high-throughput devices and techniques. Thereby, the MIABiE consortium has initiated the identification and organization of a set of modules containing the minimum information that needs to be reported to guarantee the interpretability and independent verification of experimental results and their integration with knowledge coming from other fields. MIABiE does not intend to propose specific standards on how biof…
Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes
2015
In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝn space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝn space, whose components represent certain amino acid side-chain properties, were used as weighting schemes. Generalization approaches for the calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are proposed. The simple- and double-stochastic schemes were defined as approaches to normalize the coulombic matrix. The local-fragment indices for both amino acid-types and amino acid-groups are presented in order to permit characterizing fragme…
Closed-Form Expressions for Global and Local Interpretation of Tsetlin Machines
2021
Tsetlin Machines (TMs) capture patterns using conjunctive clauses in propositional logic, thus facilitating interpretation. However, recent TM-based approaches mainly rely on inspecting the full range of clauses individually. Such inspection does not necessarily scale to complex prediction problems that require a large number of clauses. In this paper, we propose closed-form expressions for understanding why a TM model makes a specific prediction (local interpretability). Additionally, the expressions capture the most important features of the model overall (global interpretability). We further introduce expressions for measuring the importance of feature value ranges for continuous feature…
Mutual nonlinear prediction as a tool to evaluate coupling strength and directionality in bivariate time series: Comparison among different strategie…
2008
We compare the different existing strategies of mutual nonlinear prediction regarding their ability to assess the coupling strength and directionality of the interactions in bivariate time series. Under the common framework of $k$-nearest neighbor local linear prediction, we test three approaches based on cross prediction, mixed prediction, and predictability improvement. The measures of interdependence provided by these approaches are first evaluated on short realizations of bivariate time series generated by coupled Henon models, investigating also the effects of noise. The usefulness of the three mutual nonlinear prediction schemes is then assessed in a common physiological application d…
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography
2019
Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 2012, automatic medical image analysis performance has steadily increased through the use of deep learning models that automatically learn relevant features for specific tasks, instead of designing visual features manually. Nevertheless, providing insights and interpretation of the predictions made by the model is still a challenge. This paper describes a deep learning model able to detect medically interpretable information in relevant images from a volume to classify diabetes-related retinal d…
Metric Learning in Histopathological Image Classification: Opening the Black Box
2023
The application of machine learning techniques to histopathology images enables advances in the field, providing valuable tools that can speed up and facilitate the diagnosis process. The classification of these images is a relevant aid for physicians who have to process a large number of images in long and repetitive tasks. This work proposes the adoption of metric learning that, beyond the task of classifying images, can provide additional information able to support the decision of the classification system. In particular, triplet networks have been employed to create a representation in the embedding space that gathers together images of the same class while tending to separate images w…