Search results for "inversio-ongelmat"

showing 10 items of 76 documents

Inverse problems for $p$-Laplace type equations under monotonicity assumptions

2016

We consider inverse problems for $p$-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying $\sigma_1 \geq \sigma_2$ and having the same nonlinear Dirichlet-to-Neumann map must be identical. The proof is based on a monotonicity inequality and the unique continuation principle for $p$-Laplace type equations. In higher dimensions, where unique continuation is not known, we obtain a similar result for conductivities close to constant.

010101 applied mathematicsunique continuation principleMathematics - Analysis of PDEsinverse problems010102 general mathematicsFOS: MathematicsDirichlet-to-Neumann map35J92 35R300101 mathematics01 natural sciencesp-Laplace equationinversio-ongelmatAnalysis of PDEs (math.AP)
researchProduct

Jacobian of solutions to the conductivity equation in limited view

2022

Abstract The aim of hybrid inverse problems such as Acousto-Electric Tomography or Current Density Imaging is the reconstruction of the electrical conductivity in a domain that can only be accessed from its exterior. In the inversion procedure, the solutions to the conductivity equation play a central role. In particular, it is important that the Jacobian of the solutions is non-vanishing. In the present paper we address a two-dimensional limited view setting, where only a part of the boundary of the domain can be controlled by a non-zero Dirichlet condition, while on the remaining boundary there is a zero Dirichlet condition. For this setting, we propose sufficient conditions on the bounda…

Applied Mathematicscurrent density imagingconductivity equationacousto-electric tomographyinversio-ongelmatComputer Science ApplicationsTheoretical Computer ScienceFunctional Analysis (math.FA)Mathematics - Functional Analysisnon-vanishing Jacobianhybrid inverse problemsSignal Processingcoupled physics imagingFOS: MathematicsMathematical Physics
researchProduct

The Calderón problem for the fractional Schrödinger equation

2020

We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.

Approximation propertyDimension (graph theory)35J10Disjoint sets01 natural sciences35J70Domain (mathematical analysis)inversio-ongelmatSchrödinger equationsymbols.namesakeMathematics - Analysis of PDEs0103 physical sciencesApplied mathematicsUniqueness0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötNumerical AnalysisCalderón problemApplied Mathematics010102 general mathematicsInverse problem35R30approximation propertyBounded functionsymbolsinverse problem010307 mathematical physicsfractional Laplacianapproksimointi26A33Analysis
researchProduct

Exponential instability in the fractional Calder\'on problem

2017

In this note we prove the exponential instability of the fractional Calder\'on problem and thus prove the optimality of the logarithmic stability estimate from \cite{RS17}. In order to infer this result, we follow the strategy introduced by Mandache in \cite{M01} for the standard Calder\'on problem. Here we exploit a close relation between the fractional Calder\'on problem and the classical Poisson operator. Moreover, using the construction of a suitable orthonormal basis, we also prove (almost) optimality of the Runge approximation result for the fractional Laplacian, which was derived in \cite{RS17}. Finally, in one dimension, we show a close relation between the fractional Calder\'on pro…

Calderón problemApplied Mathematics010102 general mathematicsMathematics::Classical Analysis and ODEs01 natural sciencesInstabilityinversio-ongelmatComputer Science ApplicationsTheoretical Computer ScienceExponential functionHilbert transform010101 applied mathematicsMathematics - Analysis of PDEsSignal ProcessingApplied mathematics0101 mathematicsPoisson operatorMathematical PhysicsMathematics
researchProduct

The linearized Calderón problem on complex manifolds

2019

International audience; In this note we show that on any compact subdomain of a Kähler manifold that admits sufficiently many global holomorphic functions , the products of harmonic functions form a complete set. This gives a positive answer to the linearized anisotropic Calderón problem on a class of complex manifolds that includes compact subdomains of Stein manifolds and sufficiently small subdomains of Kähler manifolds. Some of these manifolds do not admit limiting Carleman weights, and thus cannot by treated by standard methods for the Calderón problem in higher dimensions. The argument is based on constructing Morse holo-morphic functions with approximately prescribed critical points.…

Class (set theory)Pure mathematicsGeneral MathematicsHolomorphic function01 natural sciencesinversio-ongelmatSet (abstract data type)symbols.namesake[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematics[MATH]Mathematics [math]complex manifoldMathematics::Symplectic GeometryMathematicsosittaisdifferentiaaliyhtälötCalderón problemMathematics::Complex VariablesApplied MathematicsRiemann surface010102 general mathematicsLimitingStandard methodsManifold010101 applied mathematicsHarmonic function[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsinverse problemMathematics::Differential Geometrymonistot
researchProduct

Determining a Random Schrödinger Operator : Both Potential and Source are Random

2020

We study an inverse scattering problem associated with a Schr\"odinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a proper sense. We then derive two unique recovery results in determining the rough strengths of the random source and the random potential, by using the corresponding far-field data. The first recovery result shows that a single realization of the passive scattering measurements uniquely recovers the rough strength of the random source. The second one shows that, by a single realization of the backscattering data, the rough strength of the random potential can be recovered…

Complex systemMicrolocal analysis01 natural sciencesinversio-ongelmatsähkömagneettinen säteilysymbols.namesakeOperator (computer programming)Mathematics - Analysis of PDEs0103 physical sciencessironta0101 mathematicsMathematical PhysicsMathematics35Q60 35J05 31B10 35R30 78A40osittaisdifferentiaaliyhtälötScattering010102 general mathematicsMathematical analysisErgodicityStatistical and Nonlinear PhysicsInverse scattering problemsymbols010307 mathematical physicsmatemaattiset mallitRealization (probability)Schrödinger's cat
researchProduct

Guaranteed error bounds for a class of Picard-Lindelöf iteration methods

2013

We present a new version of the Picard-Lindelof method for ordinary dif- ¨ ferential equations (ODEs) supplied with guaranteed and explicitly computable upper bounds of an approximation error. The upper bounds are based on the Ostrowski estimates and the Banach fixed point theorem for contractive operators. The estimates derived in the paper take into account interpolation and integration errors and, therefore, provide objective information on the accuracy of computed approximations. peerReviewed

Discrete mathematicsClass (set theory)Banach fixed-point theoremOdeguaranteed error boundsPicard-Lindelöf methodsinversio-ongelmatelliptic boundary value problemsPower iterationApproximation errorOrdinary differential equationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematicsa posteriori estimatesObjective informationInterpolationMathematics
researchProduct

Radiating and non-radiating sources in elasticity

2018

In this work, we study the inverse source problem of a fixed frequency for the Navier's equation. We investigate that nonradiating external forces. If the support of such a force has a convex or non-convex corner or edge on their boundary, the force must be vanishing there. The vanishing property at corners and edges holds also for sufficiently smooth transmission eigenfunctions in elasticity. The idea originates from the enclosure method: The energy identity and new type exponential solutions for the Navier's equation.

Enclosure010103 numerical & computational mathematicsNavier equation01 natural sciencesinversio-ongelmatTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsPhysicselastic wavesApplied MathematicsMathematical analysisRegular polygonElasticity (physics)EigenfunctionComputer Science ApplicationsExponential function010101 applied mathematicsInverse source probleminverse source problemsSignal Processingexponential solutions transmission eigenfunctionsFixed frequencyAnalysis of PDEs (math.AP)
researchProduct

Free boundary methods and non-scattering phenomena

2021

We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from t…

FOS: Physical sciencesBoundary (topology)01 natural sciencesinversio-ongelmatTheoretical Computer ScienceMathematics - Analysis of PDEsMathematics (miscellaneous)ConverseFOS: MathematicsPoint (geometry)0101 mathematicsMathematical PhysicsComplement (set theory)MathematicsosittaisdifferentiaaliyhtälötQuadrature domainsScatteringApplied MathematicsResearch010102 general mathematicsMathematical analysisMathematical Physics (math-ph)010101 applied mathematicsComputational MathematicsObstacleInverse scattering problemAnalysis of PDEs (math.AP)Research in the Mathematical Sciences
researchProduct

Tensor tomography in periodic slabs

2018

Abstract The X-ray transform on the periodic slab [ 0 , 1 ] × T n , n ≥ 0 , has a non-trivial kernel due to the symmetry of the manifold and presence of trapped geodesics. For tensor fields gauge freedom increases the kernel further, and the X-ray transform is not solenoidally injective unless n = 0 . We characterize the kernel of the geodesic X-ray transform for L 2 -regular m -tensors for any m ≥ 0 . The characterization extends to more general manifolds, twisted slabs, including the Mobius strip as the simplest example.

Geodesicx-ray examinationslab geometrytomography01 natural sciencesinversio-ongelmatTensor fieldsymbols.namesaketomografiaMöbius stripTensor0101 mathematicsMathematical physicsMathematicsinverse problems010102 general mathematicsta111röntgentutkimusSymmetry (physics)Injective functionManifold010101 applied mathematicsKernel (algebra)symbolstensor tomographyX-ray tomographyAnalysisJournal of Functional Analysis
researchProduct