Search results for "iso"

showing 10 items of 22430 documents

Origin of Enzymatic Kinetic Isotope Effects in Human Purine Nucleoside Phosphorylase

2017

Here we report a study of the effect of heavy isotope labeling on the reaction catalyzed by human purine nucleoside phosphorylase (hPNP) to elucidate the origin of its catalytic effect and of the enzymatic kinetic isotope effect (EKIE). Using quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations, we study the mechanism of the hPNP enzyme and the dynamic effects by means of the calculation of the recrossing transmission coefficient. A free energy surface (FES), as a function of both a chemical and an environmental coordinate, is obtained to show the role of the environment on the chemical reaction. Analysis of reactive and nonreactive trajectories allows us …

010304 chemical physicsChemistryPurine nucleoside phosphorylasevariational transition state theoryGeneral Chemistry010402 general chemistryenzyme catalysis01 natural sciencesChemical reactionCatalysis0104 chemical sciencesEnzyme catalysisCatalysisSolventMolecular dynamicsComputational chemistryenzymatic kinetic isotope effect0103 physical sciencesKinetic isotope effectMoleculeQM/MM methodsprotein motionsACS Catalysis
researchProduct

Quantum dynamics of 16O in collision with ortho- and para-17O17O

2017

Abstract We report full quantum dynamical observables, such as integral and differential cross sections and rate constants, for the 16 O +  17 O 17 O reactive collision process. We particularly emphasize the effect coming from the nonzero nuclear spin of 17 O, leading to two nuclear spin isomers of 34 O 2 , ortho- and para- 34 O 2 which can be studied independently and behave differently. A comparison with the 16 O +  18 O 18 O collision is given. We find that processes involving 17 O 17 O are always faster than with 18 O 18 O.

010304 chemical physicsChemistryQuantum dynamicsGeneral Physics and AstronomyObservable010402 general chemistryCollision01 natural sciences0104 chemical sciencesReaction rate constant0103 physical sciencesKinetic isotope effectPhysical chemistryPhysical and Theoretical ChemistryAtomic physicsQuantumChemical Physics Letters
researchProduct

Germanium Dicarbide: Evidence for a T-Shaped Ground State Structure

2017

The equilibrium structure of germanium dicarbide GeC2 has been an open question since the late 1950s. Although most high-level quantum calculations predict an L-shaped geometry, a T-shaped or even a linear geometry cannot be ruled out because of the very flat potential energy surface. By recording the rotational spectrum of this dicarbide using sensitive microwave and millimeter techniques, we unambiguously establish that GeC2 adopts a vibrationally averaged T-shaped structure in its ground state. From analysis of 14 isotopologues, a precise r0 structure has been derived, yielding a Ge–C bond length of 1.952(1) A and an apex angle of 38.7(2)°.

010304 chemical physicsChemistrychemistry.chemical_elementLinear molecular geometryGermanium02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsBond lengthCrystallography0103 physical sciencesPotential energy surfaceGeneral Materials ScienceMillimeterIsotopologuePhysical and Theoretical Chemistry0210 nano-technologyGround stateMicrowaveThe Journal of Physical Chemistry Letters
researchProduct

Gas-Phase Synthesis of the Elusive Trisilicontetrahydride Species (Si3H4)

2016

The bimolecular gas-phase reaction of ground-state atomic silicon (Si; 3P) with disilane (Si2H6; 1A1g) was explored under single-collision conditions in a crossed molecular beam machine at a collision energy of 21 kJ mol–1. Combined with electronic structure calculations, the results suggest the formation of Si3H4 isomer(s) along with molecular hydrogen via indirect scattering dynamics through Si3H6 collision complex(es) and intersystem crossing from the triplet to the singlet surface. The nonadiabatic reaction dynamics can synthesize the energetically accessible singlet Si3H4 isomers in overall exoergic reaction(s) (−93 ± 21 kJ mol–1). All reasonable reaction products are either cyclic or …

010304 chemical physicsElectronic structure010402 general chemistryPhotochemistry01 natural sciences0104 chemical sciencesChemical DynamicsCrossed molecular beamchemistry.chemical_compoundIntersystem crossingchemistryReaction dynamics0103 physical sciencesGeneral Materials ScienceSinglet stateDisilanePhysical and Theoretical ChemistryIsomerizationThe Journal of Physical Chemistry Letters
researchProduct

Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study

2019

The adsorption of gas-phase pyruvic acid (CH3COCOOH) on hydroxylated silica particles has been investigated at 296 K using transmission Fourier transform infrared (FTIR) spectroscopy and theoretical simulations. Under dry conditions (<1% relative humidity, RH), both the trans-cis (Tc) and trans-trans (Tt) pyruvic acid conformers are observed on the surface as well as the (hydrogen bonded) pyruvic acid dimer. The detailed surface interactions were further understood through ab initio molecular dynamics simulations. Under higher relative humidity conditions (above 10% RH), adsorbed water competes for surface adsorption sites. Adsorbed water is also observed to change the relative populations …

010304 chemical physicsHydrogenChemistryDimerInorganic chemistrychemistry.chemical_element010402 general chemistry01 natural sciences0104 chemical scienceschemistry.chemical_compoundAdsorption13. Climate action0103 physical sciencesRelative humidityPyruvic acid[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Physical and Theoretical ChemistryFourier transform infrared spectroscopySpectroscopyConformational isomerismComputingMilieux_MISCELLANEOUS
researchProduct

Quantum Dynamics of the 17O + 32O2 Collision Process

2016

We report full quantum integral and differential cross sections and rate constants for the 17O + 32O2 reactive process. This constitutes the first quantum scattering study of the 17O16O16O system. We emphasize the comparison with the 18O + 32O2 collision in close connection to the mass-independent fractionation (hereafter referred to as MIF) puzzle for ozone in atmospheric chemistry. We find similar general trends in the cross sections and rate constants for both rare isotopes, but we note some singular behaviors peculiar to the use of 17O isotope, particularly at the lowest collision energies.

010304 chemical physicsIsotopeChemistryQuantum dynamics010402 general chemistryCollision01 natural sciences0104 chemical sciencesConnection (mathematics)Reaction rate constantAtmospheric chemistry0103 physical sciencesScattering theoryPhysical and Theoretical ChemistryAtomic physicsQuantumThe Journal of Physical Chemistry A
researchProduct

Pressure‐induced widths and shifts for the ν3 band of methane

1994

International audience; Widths and shifts of methane lines perturbed by nitrogen are calculated using a complex-valued implementation of Robert-Bonamy (RB) theory. The static intermolecular potential is described as a sum of electrostatic forces and Lennard-Jones (6-12) atom-atom terms, using literature values for all physical parameters. Vibrational dependence of the isotropic potential is obtained from the polarizability of methane assuming a dispersion interaction. The repulsive part of the Lennard-Jones accounts for the greatest part of widths, while dispersion interactions are largely responsible for shifts. Although the average error between calculated and observed linewidths (up to J…

010304 chemical physicsMathematical modelAbsorption spectroscopyIntermolecular forceIsotropyGeneral Physics and Astronomy7. Clean energy01 natural sciencesMethane010309 opticschemistry.chemical_compoundLennard-Jones potentialchemistryPolarizability0103 physical sciencesDispersion (optics)Physics::Atomic and Molecular ClustersPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsThe Journal of Chemical Physics
researchProduct

Matrix isolation and quantum chemical studies on the H2O2–SO2complex

2004

Complexation and photochemical reactions of hydrogen peroxide and sulfur dioxide have been studied in solid Ar, Kr and Xe. Complexes between H2O2 and SO2 are characterized using Fourier transform infrared spectroscopy and ab initio calculations. In solid Ar, the H2O2–SO2 complex absorptions are found at wavenumbers of 3572.8, 3518.7, 3511.2, 3504.3, 1340.3, 1280.2 and 1149.9 cm−1. In Kr and Xe matrices, the bonded OH stretching frequencies deviate from the values in Ar, and we propose that the matrix surrounding influences the structure of the H2O2–SO2 complex. UV photolysis of the H2O2–SO2 was also studied in solid Ar, Kr and Xe. This photolysis produces mainly a complex between sulfur tri…

010304 chemical physicsPhotodissociationMatrix isolationGeneral Physics and Astronomy010402 general chemistry7. Clean energy01 natural sciences0104 chemical scienceschemistry.chemical_compoundMatrix (mathematics)chemistryComputational chemistryAb initio quantum chemistry methods0103 physical sciencesSulfur trioxidePhysical chemistryPhysical and Theoretical ChemistryFourier transform infrared spectroscopyHydrogen peroxideSulfur dioxidePhys. Chem. Chem. Phys.
researchProduct

Time-resolved photoisomerization of 1,1′-di-tert-butylstilbene and 1,1′-dicyanostilbene

2016

Abstract Photoisomerization of 1,1′-di-tert-butylstilbene ( 3 ) and 1,1′-dicyanostilbene ( 4 ) is monitored with stationary and broadband transient absorption spectroscopy. The electron affinity of the substituents correlates with the shift of the absorption band. The weak extinction of 3 complicates data interpretation, but comparison with earlier measured 1,1′-dimethylstilbene ( 1 ) and 1,1′-diethylstilbene ( 2 ) helps to assign transient spectra and relaxation paths. For 3 a long-lived perpendicular state P is observed with lifetime τ P  = 134 ps in acetonitrile. For 4 τ P  = 2.1 ps in acetonitrile and 27 ps in n-hexane, the difference indicating a substantial dipole moment (∼3D) of the …

010304 chemical physicsPhotoisomerizationChemistryRelaxation (NMR)Analytical chemistryGeneral Physics and Astronomy010402 general chemistry01 natural sciences0104 chemical sciencesDipolechemistry.chemical_compoundAbsorption bandElectron affinity0103 physical sciencesUltrafast laser spectroscopyPhysical and Theoretical ChemistrySpectroscopyAcetonitrileChemical Physics Letters
researchProduct

Exotic SiO(2)H(2) Isomers: Theory and Experiment Working in Harmony.

2016

Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. …

010304 chemical physicsSiliconChemistrychemistry.chemical_element010402 general chemistry01 natural sciencesDissociation (chemistry)0104 chemical sciencesComputational chemistryMetastability0103 physical sciencesRotational spectrumPhysical chemistryGeneral Materials ScienceElectric dischargeRotational spectroscopyPhysical and Theoretical ChemistryMolecular beamConformational isomerismThe journal of physical chemistry letters
researchProduct