Search results for "jodi"
showing 10 items of 26 documents
Is maternal thyroid hormone deposition subject to a trade-off between self and egg because of iodine?
2021
ABSTRACT Maternal hormones constitute a key signalling pathway for mothers to shape offspring phenotype and fitness. Thyroid hormones (THs; triiodothyronine, T3; and thyroxine, T4) are metabolic hormones known to play crucial roles in embryonic development and survival in all vertebrates. During early developmental stages, embryos exclusively rely on exposure to maternal THs, and maternal hypothyroidism can cause severe embryonic maldevelopment. The TH molecule includes iodine, an element that cannot be synthesised by the organism. Therefore, TH production may become costly when environmental iodine availability is low. This may yield a trade-off for breeding females between allocating the …
Mass and half-life measurements of neutron-deficient iodine isotopes
2020
The European physical journal / A 56(5), 143 (2020). doi:10.1140/epja/s10050-020-00153-5
Towards purely inorganic clusters in medicine: Biocompatible divalent cations as counterions of cobaltabis(dicarbollide) and its iodinated derivatives
2021
Monovalent cations, Cs+, and alkylammonium ([NR4]+) salts have traditionally been used to precipitate the anions of boranes, carborane and metallocarborane clusters. In contrast, in the body and in living organisms in general, divalent cations have a special relevance. In this work, we isolate for the first time the cobaltabis(dicarbollide) salts of the biocompatible divalent cations of biological importance that can have application both in biology and in materials science. The preparation of Ca2+, Mg2+ and Fe2+ salts of anionic iodinated nido-[C2B9H12]− and cobaltabis(dicarbollide) as well as its di-, tetra- and octa-iodinated derivatives are reported. Ca2+ and Mg2+ are hard Lewis acids a…
Iodonium complexes of the tertiary amines quinuclidine and 1-ethylpiperidine
2021
Iodonium complexes incorporating tertiary amines have been synthesised to study and explore why such species comprised of alkyl amines are relatively rare. The complexes were characterised in solution (1H and 15N NMR spectroscopy) and the solid state (SCXRD), and analysed computationally. peerReviewed
Halogen bond preferences of thiocyanate ligand coordinated to Ru(II) via sulphur atom
2017
Halogen bonding between [Ru(bpy)(CO)2(S-SCN)2] (bpy = 2,2’-bipyridine), I2 was studied by co-crystallising the metal compound and diiodine from dichloromethane. The only observed crystalline product was found to be [Ru(bpy)(CO)2(S-SCN)2]⋅I2 with only one NCS⋅⋅⋅I2 halogen bond between I2 and the metal coordinated S atom of one of the thiocyanate ligand. The dangling nitrogen atoms were not involved in halogen bonding. However, computational analysis suggests that there are no major energetic differences between the NCS⋅⋅⋅I2 and SCN⋅⋅⋅I2 bonding modes. The reason for the observed NCS⋅⋅⋅I2 mode lies most probably in the more favourable packing effects rather than energetic preferences between …
Intersektionaaliset toverit : Jodi Deanin poliittisesta ajattelusta
2021
Asymmetric [N–I–N]+halonium complexes in solution?
2020
Assessment of the solution equilibria of [bis(pyridine)iodine(I)]+ complexes by ESI-MS and NMR reveals the preference of iodine(I) to form complexes with a more basic pyridine. Mixtures of symmetric [bis(pyridine)iodine(I)]+ complexes undergo statistical ligand exchange, with a predominant entropic driving force favoring asymmetric systems. The influence of ligand basicity, concentration, temperature, and ligand composition is evaluated. Our findings are expected to facilitate the investigations, and the supramolecular and synthetic applications of halonium ions’ halogen bonds. peerReviewed
Electronic spectroscopy of I2-Xe complexes in solid Krypton
2012
In the present work, we have studied ion-pair states of matrix-isolated I2 with vacuum-UV absorption and UV-vis-NIR emission, where the matrix environment is systematically changed by mixing Kr with Xe, from pure Kr to a more polarizable Xe host. Particular emphasis is put on low doping levels of Xe that yield a binary complex I2–Xe, as verified by coherent anti-Stokes Raman scattering (CARS) measurements. Associated with interaction of I2 with Xe we can observe strong new absorption in vacuum-UV, redshifted 2400 cm−1 from the X → D transition of I2. Observed redshift can be explained by symmetry breaking of ion-pair states within the I2–Xe complex. Systematic Xe doping of Kr matrices shows…
Solid‐state NMR Spectroscopy of Iodine(I) Complexes
2023
Solid-state NMR has been applied to a series of Barluenga-type iodine(I) [L-I-L]PF6 (L=pyridine, 4-ethylpyridine, 4-dimethylaminopyridine, isoquinoline) complexes as their hexafluorophosphate salts, as well as their respective non-liquid ligands (L), their precursor silver(I) complexes, and the respective N-methylated pyridinium and quinolinium hexafluorophoshate salts. These results are compared and contrasted to the corresponding solution studies and single-crystal X-ray structures. As the first study of its kind on the solid-state NMR behavior of halogen(I) complexes, practical considerations are also discussed to encourage wider utilization of this technique in the future. peerReviewed
Iodine(i) complexes incorporating sterically bulky 2-substituted pyridines
2022
The silver(I) and iodine(I) complexes of the 2-substituted pyridines 2-(diphenylmethyl)pyridine (1) and 2-(1,1-diphenylethyl)pyridine (2), along with their potential protonated side products, were synthesised to investigate the steric limitations of iodine(I) complex formation. The complexes were characterised by 1H and 1H–15N HMBC NMR, X-ray crystallography, and DFT calculations. The solid-state structures for the silver(I) and iodine(I) complexes were extensively compared to the literature and analysed by DFT to examine the influence of the sterically bulky pyridines and their anions. peerReviewed