Search results for "kernel"
showing 10 items of 357 documents
Tuning the Electronic Properties of the Dative N-B Bond with Associated O-B Interaction: Electron Localizability Indicator from X-Ray Wavefunction Re…
2016
Despite the immense growth in interest in difluoroborate dyes, the nature of the interactions of the boron atom within the N-BF2 -O kernel is not yet fully understood. Herein, a set of real-space bonding indicators is used to quantify the electronic characteristics of the dative N-B bond in difluoroborate derivatives. The atoms-in-molecules (AIM) partitioning scheme is complemented by the electron localizability indicator (ELI-D) approach, and both were applied to experimental and theoretical electron-density distributions (X-ray constrained wavefunction fitting vs. DFT calculations). Additionally, Fermi orbital analysis was introduced for small DFT models to support and extend the findings…
Recent Advances in Techniques for Hyperspectral Image Processing
2009
International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …
Automatic emulator and optimized look-up table generation for radiative transfer models
2017
This paper introduces an automatic methodology to construct emulators for costly radiative transfer models (RTMs). The proposed method is sequential and adaptive, and it is based on the notion of the acquisition function by which instead of optimizing the unknown RTM underlying function we propose to achieve accurate approximations. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of the method in toy examples and for the construction of an…
Estimating Missing Information by Cluster Analysis and Normalized Convolution
2018
International audience; Smart city deals with the improvement of their citizens' quality of life. Numerous ad-hoc sensors need to be deployed to know humans' activities as well as the conditions in which these actions take place. Even if these sensors are cheaper and cheaper, their installation and maintenance cost increases rapidly with their number. We propose a methodology to limit the number of sensors to deploy by using a standard clustering technique and the normalized convolution to estimate environmental information whereas sensors are actually missing. In spite of its simplicity, our methodology lets us provide accurate assesses.
Efficient remote sensing image classification with Gaussian processes and Fourier features
2017
This paper presents an efficient methodology for approximating kernel functions in Gaussian process classification (GPC). Two models are introduced. We first include the standard random Fourier features (RFF) approximation into GPC, which largely improves the computational efficiency and permits large scale remote sensing data classification. In addition, we develop a novel approach which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones using a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery.
Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis
2015
In this paper we present an approach to perform relative spectral alignment between optical cross-sensor acquisitions. The proposed method aims at projecting the images from two different and possibly disjoint input spaces into a common latent space, in which standard change detection algorithms can be applied. The system relies on the regularized kernel canonical correlation analysis transformation (kCCA), which can accommodate nonlinear dependencies between pixels by means of kernel functions. To learn the projections, the method employs a subset of samples belonging to the unchanged areas or to uninteresting radiometric differences. Since the availability of ground truth information to p…
Hyperspectral dimensionality reduction for biophysical variable statistical retrieval
2017
Abstract Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data, we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspectral datasets were analyzed on the predictive power of DR + MLRA methods to ret…
2016
Gianluca Tramontana was supported by the GEOCARBON EU FP7 project (GA 283080). Dario Papale, Martin Jung and Markus Reichstein acknowledge funding from the EU FP7 project GEOCARBON (grant agreement no. 283080) and the EU H2020 BACI project (grant agreement no. 640176). Gustau Camps-Valls wants to acknowledge the support by an ERC Consolidator Grant with grant agreement 647423 (SEDAL). Kazuhito Ichii was supported by Environment Research and Technology Development Funds (2-1401) from the Ministry of the Environment of Japan and the JAXA Global Change Observation Mission (GCOM) project (no. 115). Christopher R. Schwalm was supported by National Aeronautics and Space Administration (NASA) gran…
Relationship between seed morphological traits and ash and mineral distribution along the kernel using debranning in durum wheats from different geog…
2020
Debranning was applied to durum wheat to the study the relationship between kernel shape and size, and ash and mineral distribution having implications for semolina yield. To this aim four durum wheat genotypes carried out over three environments were selected to determine the morphological and yield traits as well as the distribution along the kernel of the ash, macro- (Na, K, P, Ca, and Mg), and micro-elements (Mn, Fe, Cu, Zn, and Mo). A descendent ash gradient within the kernel reflects the decreases in the minerals that occurred during debranning. Perciasacchi with high seed weight (TKW) and greater thickness followed by Cappelli showed a more uniform distribution of ash content along t…
Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests
2021
We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points x affects another set of points y but not vice versa. We use the model to investigate the effect of large trees to the locations of seedlings. In the model, every point in x has a parametric influence kernel or signal, which together form an influence field. Conditionally on the parameters, the influence field acts as a spatial covariate in the intensity of the model, and the intensity itself is a non-linear function of the parameters. Points outside the observation window may affect the influence field inside the window. We propose an edge correction to account for this missing data. The par…