Search results for "lcsh:D"

showing 10 items of 1028 documents

Platelet Pathogen Reduction Technologies Alter the MicroRNA Profile of Platelet-Derived Microparticles

2020

Despite improvements in donor screening and increasing efforts to avoid contamination and the spread of pathogens in clinical platelet concentrates (PCs), the risks of transfusion-transmitted infections remain important. Relying on an ultraviolet photo activation system, pathogen reduction technologies (PRTs), such as Intercept and Mirasol, utilize amotosalen, and riboflavin (vitamin B2), respectively, to mediate inactivation of pathogen nucleic acids. Although they are expected to increase the safety and prolong the shelf life of clinical PCs, these PRTs might affect the quality and function of platelets, as recently reported. Upon activation, platelets release microparticles (MPs), which …

0301 basic medicineAmotosalenmedicine.medical_specialtySmall RNAlcsh:Diseases of the circulatory (Cardiovascular) systemmirasolCardiovascular Medicine030204 cardiovascular system & hematology03 medical and health sciences0302 clinical medicineclinical platelet concentrateInternal medicinemicroRNAmedicinePlateletHematologiPathogenOriginal ResearchRegulation of gene expressionHematologymicroRNApathogen reductionChemistryclinical platelet concentrate; pathogen reduction; mirasol; intercept; extracellular vesicles; small RNA-sequencing; microRNAHematology3. Good healthCell biologysmall RNA-sequencing030104 developmental biologylcsh:RC666-701extracellular vesiclesCardiology and Cardiovascular MedicineFunction (biology)interceptFrontiers in Cardiovascular Medicine
researchProduct

Germ-free housing conditions do not affect aortic root and aortic arch lesion size of late atherosclerotic low-density lipoprotein receptor-deficient…

2020

The microbiota has been linked to the development of atherosclerosis, but the functional impact of these resident bacteria on the lesion size and cellular composition of atherosclerotic plaques in the aorta has never been experimentally addressed with the germ-free low-density lipoprotein receptor-deficient (Ldlr(-/-)) mouse atherosclerosis model. Here, we report that 16 weeks of high-fat diet (HFD) feeding of hypercholesterolemicLdlr(-/-)mice at germ-free (GF) housing conditions did not impact relative aortic root plaque size, macrophage content, and necrotic core area. Likewise, we did not find changes in the relative aortic arch lesion size. However, late atherosclerotic GFLdlr(-/-)mice …

0301 basic medicineAortic archMalePathologyaortic rootAortic rootaortic archFunctional impactAorta ThoracicHYPERCHOLESTEROLEMIAMice0302 clinical medicineDeficient mouse610 Medicine & healthMice KnockoutBILE-ACIDSCellular compositionMicrobiotaCHOLESTEROLGUT MICROBIOTAGastroenterologyinflammatory markersHousing AnimalPlaque Atheroscleroticmacrophagessmooth muscle cellsInfectious Diseasesgerm-free030211 gastroenterology & hepatologyFemalelipids (amino acids peptides and proteins)SEXTRIMETHYLAMINEmedicine.symptomMicrobiology (medical)medicine.medical_specialty610 Medicine & healthBiologyMETABOLISMlesion sizeMicrobiologyLesion03 medical and health sciencesINFLAMMATIONmedicine.arterymedicineAnimalsGerm-Free LifeHumanslcsh:RC799-869AddendumMice Inbred C57BLDisease Models Animal030104 developmental biologyReceptors LDLlow-density lipoprotein receptor-deficient mouseageLDL receptorlcsh:Diseases of the digestive system. Gastroenterologyatherosclerosis
researchProduct

Culture into perfusion-assisted bioreactor promotes valve-like tissue maturation of recellularized pericardial membrane

2020

Derivation of tissue-engineered valve replacements is a strategy to overcome the limitations of the current valve prostheses, mechanical, or biological. In an effort to set living pericardial material for aortic valve reconstruction, we have previously assessed the efficiency of a recellularization strategy based on a perfusion system enabling mass transport and homogenous distribution of aortic valve-derived “interstitial” cells inside decellularized pericardial material. In the present report, we show that alternate perfusion promoted a rapid growth of valve cells inside the pericardial material and the activity of a proliferation-supporting pathway, likely controlled by the YAP transcrip…

0301 basic medicineAortic valvelcsh:Diseases of the circulatory (Cardiovascular) systemCardiovascular Medicine030204 cardiovascular system & hematologyProtein contentBiomaterials03 medical and health sciences0302 clinical medicineBioreactormedicinePericardiumEngineered tissueOriginal ResearchDecellularizationChemistryPerfusion systemBiomaterialValve interstitial cell030104 developmental biologymedicine.anatomical_structureMembranelcsh:RC666-701Valve implantCardiology and Cardiovascular MedicinePerfusionPericardiumBiomedical engineering
researchProduct

Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma

2019

Background Genomic instability is a feature of multiple myeloma (MM), and impairment in DNA damaging response (DDR) has an established role in disease pathobiology. Indeed, a deregulation of DNA repair pathways may contribute to genomic instability, to the establishment of drug resistance to genotoxic agents, and to the escape from immune surveillance. On these bases, we evaluated the role of different DDR pathways in MM and investigated, for the first time, the direct and immune-mediated anti-MM activity of the nucleotide excision repair (NER)-dependent agent trabectedin. Methods Gene-expression profiling (GEP) was carried out with HTA2.0 Affymetrix array. Evaluation of apoptosis, cell cyc…

0301 basic medicineCancer ResearchCell cycle checkpointNatural killerDNA repairmedicine.medical_treatmentMyelomalcsh:RC254-28203 medical and health sciences0302 clinical medicineMicro-RNAmedicineHumansMolecular BiologyAntineoplastic Agents AlkylatingTrabectedin3D-modelChemistrylcsh:RC633-647.5ResearchMicro-RNAsHematologylcsh:Diseases of the blood and blood-forming organsCell cycleNKG2Dlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensKiller Cells Natural030104 developmental biologyCytokineOncologyApoptosis3D-models030220 oncology & carcinogenesis3D-models; Micro-RNAs; Myeloma; Natural killer; TrabectedinCancer researchDNA fragmentationMultiple Myelomamedicine.drugTrabectedinJournal of Hematology & Oncology
researchProduct

Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment l…

2019

Background Multiple myeloma (MM) is a clonal plasma cell malignancy associated with osteolytic bone disease. Recently, the role of MM-derived exosomes in the osteoclastogenesis has been demonstrated although the underlying mechanism is still unknown. Since exosomes-derived epidermal growth factor receptor ligands (EGFR) are involved in tumor-associated osteolysis, we hypothesize that the EGFR ligand amphiregulin (AREG) can be delivered by MM-derived exosomes and participate in MM-induced osteoclastogenesis. Methods Exosomes were isolated from the conditioned medium of MM1.S cell line and from bone marrow (BM) plasma samples of MM patients. The murine cell line RAW264.7 and primary human CD1…

0301 basic medicineCancer ResearchOsteoclastsPlasma cellInterleukin 8ExosomesLigandsMice0302 clinical medicineEpidermal growth factorOsteogenesisMultiple myelomaBone diseaseTumor MicroenvironmentEpidermal growth factor receptorbiologyChemistryAntibodies MonoclonalOsteoblastCell DifferentiationHematologylcsh:Diseases of the blood and blood-forming organslcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensErbB Receptorsmedicine.anatomical_structureOncology030220 oncology & carcinogenesislcsh:RC254-282Amphiregulin03 medical and health sciencesAmphiregulinOsteoclastCell Line TumormedicineCell AdhesionAnimalsHumansMolecular BiologyOsteoblastsEpidermal Growth Factorlcsh:RC633-647.5Epidermal growth factor receptorResearchMesenchymal stem cellInterleukin-8Mesenchymal Stem CellsMicrovesiclesExosome030104 developmental biologyRAW 264.7 CellsCancer researchbiology.protein
researchProduct

Human Dental Pulp Stem Cells Exhibit Different Biological Behaviours in Response to Commercial Bleaching Products

2018

The purpose of this study was to evaluate the diffusion capacity and the biological effects of different bleaching products on human dental pulp stem cells (hDPSCs). The bleaching gel was applied for 90, 30 or 15 min to enamel/dentine discs that adapted in an artificial chamber. The diffusion of hydrogen peroxide (HP) was analysed by fluorometry and the diffusion products were applied to hDPSCs. Cell viability, cell migration and cell morphology assays were performed using the eluates of diffusion products. Finally, cell apoptosis and the expression of mesenchymal stem cell markers were analysed by flow cytometry. Statistical analysis was performed using analysis of variance and Kruskal&nda…

0301 basic medicineCell morphologylcsh:TechnologyArticleFlow cytometry03 medical and health scienceschemistry.chemical_compound0302 clinical medicinestomatognathic systemstem cellsDental pulp stem cellsmedicineGeneral Materials ScienceViability assaylcsh:MicroscopyHydrogen peroxidelcsh:QC120-168.85bleaching productslcsh:QH201-278.5Enamel paintmedicine.diagnostic_testlcsh:TMesenchymal stem celldiffusion030206 dentistryMolecular biologystomatognathic diseases030104 developmental biologychemistrylcsh:TA1-2040visual_artvisual_art.visual_art_mediumcytotoxicitylcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringStem celldental pulplcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Mitochondrion at the Crossroad Between Nutrients and Epigenome.

2019

Epigenetic profile is the link between the regulation of nuclear gene expression and the environment. The most important factors capable of significantly affecting the cellular environment are the amount and quality of nutrients available. Mitochondria are both involved in the production of some of the molecules capable of directly affecting the epigenome and have a critical role in the conversion of nutrients into usable energy. Carbohydrate and fats are converted into ATP, acetyl-CoA, SAM, and NADH. These high-energy substrates are, in turn, capable of driving the epigenetic profile. We describe substances capable of affecting this mechanism. On the other hand, nutritional interventions c…

0301 basic medicineEndocrinology Diabetes and MetabolismMini Reviewnutrition and epigenome030209 endocrinology & metabolismMitochondrionlcsh:Diseases of the endocrine glands. Clinical endocrinology03 medical and health sciences0302 clinical medicineEndocrinologynutrients and epigenomemitochondria and metabolismEpigenetic ProfileFMD and epigenomeEpigeneticslcsh:RC648-665biologymitochondrion epigenetics metabolismMechanism (biology)ChemistryEpigenomeMethylationChromatinCell biology030104 developmental biologyHistonecalorie restriction and epigenomebiology.protein
researchProduct

Paroxysmal nocturnal haemoglobinuria: When delay in diagnosis and long therapy occurs

2017

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare clonal disorder characterized by hemolytic anemia, bone marrow failure and thrombosis, caused by a somaticmutation in PIG-A gene that results in theabsence of CD55 and CD59, two important complement regulatory proteins. In thispaper, a case of PNH is retrospectively examined looking for clinical and laboratory features, and the entire course of the disease from the onset of the symptoms isdescribed, together with an adequate follow-up over a 7-years treatment period. Inthis case, the not specificity and the limited clinical relevance of the symptoms led to adelay in diagnosis. After thrombosis, Eculizumab therapy has been shown to be effec…

0301 basic medicineHemolytic anemiaPediatricsmedicine.medical_specialtyrenal failureParoxysmal nocturnal haemoglobinuriaparoxysmal nocturnal hemoglobinuriaCase ReportDiseaseCD5903 medical and health sciencesthrombotic eventshemic and lymphatic diseasesMedicineClinical significancebusiness.industrylcsh:RC633-647.5Bone marrow failureHematologylcsh:Diseases of the blood and blood-forming organsEculizumabEculizumabmedicine.diseaseThrombosisparoxysmal nocturnal hemoglo-binuria thrombotic events renal failure Eculizumab030104 developmental biologyParoxysmal nocturnal hemoglobinuriabusinessmedicine.drug
researchProduct

Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals 5 Distinct Subtypes of Colorectal Adenocarcinomas

2019

BACKGROUND & AIMS: Colorectal cancer is an epigenetically heterogeneous disease, however, the extent and spectrum of the CpG island methylator phenotype (CIMP) is not clear. METHODS: Genome-scale methylation and transcript expression were measured by DNA Methylation and RNA expression microarray in 216 unselected colorectal cancers, and findings were validated using The Cancer Genome Atlas 450K and RNA sequencing data. Mutations in epigenetic regulators were assessed using CIMP-subtyped Cancer Genome Atlas exomes. RESULTS: CIMP-high cancers dichotomized into CIMP-H1 and CIMP-H2 based on methylation profile. KRAS mutation was associated significantly with CIMP-H2 cancers, but not CIMP-H1 can…

0301 basic medicineHepatologyCpG Island Methylator PhenotypeColorectal cancerGastroenterologyMethylationBiologymedicine.disease_causemedicine.diseasedigestive system diseases3. Good health03 medical and health sciences030104 developmental biology0302 clinical medicineDNA methylationCancer researchmedicinelcsh:Diseases of the digestive system. Gastroenterology030211 gastroenterology & hepatologyKRASEpigeneticslcsh:RC799-869neoplasmsGeneExome sequencingCellular and Molecular Gastroenterology and Hepatology
researchProduct

NT3/TrkC Pathway Modulates the Expression of UCP-1 and Adipocyte Size in Human and Rodent Adipose Tissue

2021

Neurotrophin-3 (NT3), through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (especially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 (encoded by NTF3) was present in human re…

0301 basic medicineMaleAgingSympathetic Nervous SystemEndocrinology Diabetes and Metabolismbeta-adrenoceptorsAdipose tissueWhite adipose tissueTropomyosin receptor kinase Clcsh:Diseases of the endocrine glands. Clinical endocrinologychemistry.chemical_compound0302 clinical medicineEndocrinologyAdipocyteBrown adipose tissueUncoupling Protein 1Original ResearchbiologyChemistryCell Differentiationtropomyosin-related kinase receptor CCell biologymedicine.anatomical_structureAdipose Tissueembryonic structuresFemaleSignal Transductionanimal structuresadipocytesLipolysisUCP-1Mice TransgenicNeurotrophin-303 medical and health scienceswhite adipose tissueneurotrophin-3Receptors Adrenergic betamedicineLipolysisAnimalsHumansReceptor trkCRats WistarAgedCell Sizelcsh:RC648-665Body Weightbrown adipose tissue030104 developmental biologybiology.proteinBlood VesselsThermogenesis030217 neurology & neurosurgeryBiomarkersFrontiers in Endocrinology
researchProduct