Search results for "lower bound"
showing 10 items of 269 documents
Reliable estimates in the anisotropic heat conduction problems
2014
Abstract The heat conduction problems for anisotropic bodies are studied taking into account the uncertainties in the material orientation. The best estimations of the upper and lower bounds of the considered energy dissipation functional are based on developing new approach consisting in solution of some optimization problems and finding the extremal internal material structures, which realize minimal and maximal dissipation. The motivation of this study comes from paper making processes, and more precisely, drying process, which consumes about 50% of the energy fed into the paper machine. The understanding of the effect of uncertainties in the process arises from structural properties of …
Consensus-based Distributed Intrusion Detection for Multi-Robot Systems
2008
This paper addresses a security problem in robotic multi-agent systems, where agents are supposed to cooperate according to a shared protocol. A distributed Intrusion Detection System (IDS) is proposed here, that detects possible non-cooperative agents. Previous work by the authors showed how single monitors embedded on-board the agents can detect non- cooperative behavior, using only locally available information. In this paper, we allow such monitors to share the collected information in order to overcome their sensing limitation. In this perspective, we show how an agreement on the type of behavior of a target-robot may be reached by the monitors, through execution of a suitable consensu…
An upper bound of the index of an equilibrium point in the plane
2012
Abstract We give an upper bound of the index of an isolated equilibrium point of a C 1 vector field in the plane. The vector field is decomposed in gradient and Hamiltonian components. This decomposition is related with the Loewner vector field. Associated to this decomposition we consider the set Π where the gradient and Hamiltonian components are linearly dependent. The number of branches of Π starting at the equilibrium point determines the upper bound of the index.
Finite Satisfiability of the Two-Variable Guarded Fragment with Transitive Guards and Related Variants
2018
We consider extensions of the two-variable guarded fragment, GF2, where distinguished binary predicates that occur only in guards are required to be interpreted in a special way (as transitive relations, equivalence relations, pre-orders or partial orders). We prove that the only fragment that retains the finite (exponential) model property is GF2 with equivalence guards without equality. For remaining fragments we show that the size of a minimal finite model is at most doubly exponential. To obtain the result we invent a strategy of building finite models that are formed from a number of multidimensional grids placed over a cylindrical surface. The construction yields a 2NExpTime-upper bou…
Upperbounds on the probability of finding marked connected components using quantum walks
2019
Quantum walk search may exhibit phenomena beyond the intuition from a conventional random walk theory. One of such examples is exceptional configuration phenomenon -- it appears that it may be much harder to find any of two or more marked vertices, that if only one of them is marked. In this paper, we analyze the probability of finding any of marked vertices in such scenarios and prove upper bounds for various sets of marked vertices. We apply the upper bounds to large collection of graphs and show that the quantum search may be slow even when taking real-world networks.
Algorithms for Anti-Powers in Strings
2018
Abstract A string S [ 1 , n ] is a power (or tandem repeat) of order k and period n / k if it can be decomposed into k consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and algorithms for their efficient computation have wide application and are heavily studied. Recently, Fici et al. (Proc. ICALP 2016) defined an anti-power of order k to be a string composed of k pairwise-distinct blocks of the same length ( n / k , called anti-period). Anti-powers are a natural converse to powers, and are objects of combinatorial interest in their own right. In this paper we initiate the algorithmic study of anti-powers. Given a string S, we describe an op…
On the Power of Non-adaptive Learning Graphs
2012
We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by cer…
Adversary Lower Bound for the k-sum Problem
2013
We prove a tight quantum query lower bound $\Omega(n^{k/(k+1)})$ for the problem of deciding whether there exist $k$ numbers among $n$ that sum up to a prescribed number, provided that the alphabet size is sufficiently large. This is an extended and simplified version of an earlier preprint of one of the authors arXiv:1204.5074.
All Classical Adversary Methods Are Equivalent for Total Functions
2017
We show that all known classical adversary lower bounds on randomized query complexity are equivalent for total functions and are equal to the fractional block sensitivity fbs( f ). That includes the Kolmogorov complexity bound of Laplante and Magniez and the earlier relational adversary bound of Aaronson. This equivalence also implies that for total functions, the relational adversary is equivalent to a simpler lower bound, which we call rank-1 relational adversary. For partial functions, we show unbounded separations between fbs( f ) and other adversary bounds, as well as between the adversary bounds themselves. We also show that, for partial functions, fractional block sensitivity canno…
Quantum lower bound for inverting a permutation with advice
2014
Given a random permutation $f: [N] \to [N]$ as a black box and $y \in [N]$, we want to output $x = f^{-1}(y)$. Supplementary to our input, we are given classical advice in the form of a pre-computed data structure; this advice can depend on the permutation but \emph{not} on the input $y$. Classically, there is a data structure of size $\tilde{O}(S)$ and an algorithm that with the help of the data structure, given $f(x)$, can invert $f$ in time $\tilde{O}(T)$, for every choice of parameters $S$, $T$, such that $S\cdot T \ge N$. We prove a quantum lower bound of $T^2\cdot S \ge \tilde{\Omega}(\epsilon N)$ for quantum algorithms that invert a random permutation $f$ on an $\epsilon$ fraction of…