Search results for "machine learning"
showing 10 items of 1464 documents
A Novel Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines
2018
Being capable of online learning in unknown stochastic environments, Tsetlin Automata (TA) have gained considerable interest. As a model of biological systems, teams of TA have been used for solving complex problems in a decentralized manner, with low computational complexity. For many domains, decentralized problem solving is an advantage, however, also may lead to coordination difficulties and unstable learning. To combat this negative effect, this paper proposes a novel TA coordination scheme designed for learning problems with continuous input and output. By saving and updating the best solution that has been chosen so far, we can avoid having the overall system being led astray by spur…
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.
2021
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by…
Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies
2016
Mieth, Bettina et al.
Partitioned learning of deep Boltzmann machines for SNP data.
2016
Abstract Motivation Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. Results After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen…
Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks.
2016
Abstract Factorial Gaussian graphical Models (fGGMs) have recently been proposed for inferring dynamic gene regulatory networks from genomic high-throughput data. In the search for true regulatory relationships amongst the vast space of possible networks, these models allow the imposition of certain restrictions on the dynamic nature of these relationships, such as Markov dependencies of low order – some entries of the precision matrix are a priori zeros – or equal dependency strengths across time lags – some entries of the precision matrix are assumed to be equal. The precision matrix is then estimated by l 1-penalized maximum likelihood, imposing a further constraint on the absolute value…
Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs
2017
Detecting higher-order epistatic interactions in Genome-Wide Association Studies (GWAS) remains a challenging task in the fields of genetic epidemiology and computer science. A number of algorithms have recently been proposed for epistasis discovery. However, they suffer from a high computational cost since statistical measures have to be evaluated for each possible combination of markers. Hence, many algorithms use additional filtering stages discarding potentially non-interacting markers in order to reduce the overall number of combinations to be examined. Among others, Mutual Information Clustering (MIC) is a common pre-processing filter for grouping markers into partitions using K-Means…
Unraveling the Molecular Mechanism of Action of Empagliflozin in Heart Failure With Reduced Ejection Fraction With or Without Diabetes
2019
Visual Abstract
Graphical Workflow System for Modification Calling by Machine Learning of Reverse Transcription Signatures
2019
Modification mapping from cDNA data has become a tremendously important approach in epitranscriptomics. So-called reverse transcription signatures in cDNA contain information on the position and nature of their causative RNA modifications. Data mining of, e.g. Illumina-based high-throughput sequencing data, is therefore fast growing in importance, and the field is still lacking effective tools. Here we present a versatile user-friendly graphical workflow system for modification calling based on machine learning. The workflow commences with a principal module for trimming, mapping, and postprocessing. The latter includes a quantification of mismatch and arrest rates with single-nucleotide re…
Taxonomic Classification for Living Organisms Using Convolutional Neural Networks
2017
Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential f…
Machine learning–XGBoost analysis of language networks to classify patients with epilepsy
2017
Our goal was to apply a statistical approach to allow the identification of atypical language patterns and to differentiate patients with epilepsy from healthy subjects, based on their cerebral activity, as assessed by functional MRI (fMRI). Patients with focal epilepsy show reorganization or plasticity of brain networks involved in cognitive functions, inducing ‘atypical’ (compared to ‘typical’ in healthy people) brain profiles. Moreover, some of these patients suffer from drug-resistant epilepsy, and they undergo surgery to stop seizures. The neurosurgeon should only remove the zone generating seizures and must preserve cognitive functions to avoid deficits. To preserve functions, one sho…