Search results for "machine learning"

showing 10 items of 1464 documents

A Novel Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines

2018

Being capable of online learning in unknown stochastic environments, Tsetlin Automata (TA) have gained considerable interest. As a model of biological systems, teams of TA have been used for solving complex problems in a decentralized manner, with low computational complexity. For many domains, decentralized problem solving is an advantage, however, also may lead to coordination difficulties and unstable learning. To combat this negative effect, this paper proposes a novel TA coordination scheme designed for learning problems with continuous input and output. By saving and updating the best solution that has been chosen so far, we can avoid having the overall system being led astray by spur…

0301 basic medicineScheme (programming language)Computational complexity theoryLearning automatabusiness.industryComputer scienceStochastic process030231 tropical medicineFunction (mathematics)Machine learningcomputer.software_genre030112 virologyAutomaton03 medical and health sciences0302 clinical medicineArtificial intelligencebusinesscomputercomputer.programming_language2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)
researchProduct

Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.

2021

Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by…

0301 basic medicineSimeprevirArtificial intelligencevirusesMERS Middle East Respiratory SyndromeHealth InformaticsBiologyMachine learningcomputer.software_genremedicine.disease_causeAntiviral AgentsArticleWHO World Health OrganizationAUC area under the curve03 medical and health sciences0302 clinical medicinessRNA single-stranded RNA virusmedicineChemotherapyHumansSARS severe acute respiratory syndromeCOVID-19 coronavirus disease 2019CoronavirusNatural productsVirtual screeningACE2 angiotensin converting enzyme 2Drug discoverybusiness.industrySARS-CoV-2COVID-19LBE lowest binding energyFDA Food and Drug AdministrationROC receiver operating characteristicComputer Science ApplicationsHIV human immunodeficiency virusMolecular Docking SimulationDrug repositioning030104 developmental biologyDrug developmentSevere acute respiratory syndrome-related coronavirusParitaprevirInfectious diseasesRespiratory virusArtificial intelligenceSupervised Machine Learningbusinesscomputer030217 neurology & neurosurgeryComputers in biology and medicine
researchProduct

Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies

2016

Mieth, Bettina et al.

0301 basic medicineStatistical methodsComputer scienceGenome-wide association studyMachine learningcomputer.software_genreGenome-wide association studiesStatistical powerArticle[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Set (abstract data type)03 medical and health sciences[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG][MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]10007 Department of EconomicsStatistical significanceReplication (statistics)genomeStatistical hypothesis testingGenetic association1000 MultidisciplinaryMultidisciplinarybusiness.industryComputational scienceInstitut für Mathematik330 EconomicsSupport vector machine030104 developmental biologyMultiple comparisons problemwide association studiesstatistical methodsArtificial intelligencebusinesscomputer
researchProduct

Partitioned learning of deep Boltzmann machines for SNP data.

2016

Abstract Motivation Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. Results After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen…

0301 basic medicineStatistics and ProbabilityComputer scienceMachine learningcomputer.software_genre01 natural sciencesBiochemistryPolymorphism Single NucleotideMachine Learning010104 statistics & probability03 medical and health sciencessymbols.namesakeJoint probability distributionHumans0101 mathematicsMolecular BiologyStatistical hypothesis testingArtificial neural networkbusiness.industryGene Expression Regulation LeukemicDeep learningUnivariateComputational BiologyManifoldComputer Science ApplicationsData setComputational Mathematics030104 developmental biologyComputingMethodologies_PATTERNRECOGNITIONComputational Theory and MathematicsLeukemia MyeloidBoltzmann constantsymbolsData miningArtificial intelligencebusinesscomputerSoftwareCurse of dimensionalityBioinformatics (Oxford, England)
researchProduct

Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks.

2016

Abstract Factorial Gaussian graphical Models (fGGMs) have recently been proposed for inferring dynamic gene regulatory networks from genomic high-throughput data. In the search for true regulatory relationships amongst the vast space of possible networks, these models allow the imposition of certain restrictions on the dynamic nature of these relationships, such as Markov dependencies of low order – some entries of the precision matrix are a priori zeros – or equal dependency strengths across time lags – some entries of the precision matrix are assumed to be equal. The precision matrix is then estimated by l 1-penalized maximum likelihood, imposing a further constraint on the absolute value…

0301 basic medicineStatistics and ProbabilityFactorialDependency (UML)Computer scienceGaussianNormal Distributionpenalized inferencesparse networkscomputer.software_genreMachine learning01 natural sciencesNormal distribution010104 statistics & probability03 medical and health sciencessymbols.namesakeSparse networksGeneticsComputer SimulationGene Regulatory NetworksGraphical model0101 mathematicsgene-regulatory systemMolecular BiologyProbabilityMarkov chainModels GeneticPenalized inferencebusiness.industryModel selectiongraphical modelGene-regulatory systemsComputational Mathematics030104 developmental biologysymbolsA priori and a posterioriData miningArtificial intelligenceGraphical modelsSettore SECS-S/01 - StatisticabusinesscomputerNeisseriaAlgorithmsStatistical applications in genetics and molecular biology
researchProduct

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs

2017

Detecting higher-order epistatic interactions in Genome-Wide Association Studies (GWAS) remains a challenging task in the fields of genetic epidemiology and computer science. A number of algorithms have recently been proposed for epistasis discovery. However, they suffer from a high computational cost since statistical measures have to be evaluated for each possible combination of markers. Hence, many algorithms use additional filtering stages discarding potentially non-interacting markers in order to reduce the overall number of combinations to be examined. Among others, Mutual Information Clustering (MIC) is a common pre-processing filter for grouping markers into partitions using K-Means…

0301 basic medicineTheoretical computer scienceComputer sciencebusiness.industryContrast (statistics)Genome-wide association study02 engineering and technologyMutual informationMachine learningcomputer.software_genreReduction (complexity)03 medical and health sciences030104 developmental biologyGenetic epidemiology0202 electrical engineering electronic engineering information engineeringEpistasis020201 artificial intelligence & image processingArtificial intelligenceCluster analysisbusinesscomputerGenetic association
researchProduct

Unraveling the Molecular Mechanism of Action of Empagliflozin in Heart Failure With Reduced Ejection Fraction With or Without Diabetes

2019

Visual Abstract

0301 basic medicinelcsh:Diseases of the circulatory (Cardiovascular) systemmedicine.medical_specialtyCardiac & Cardiovascular Systemsempagliflozinheart failure030204 cardiovascular system & hematologySGLT2i sodium-glucose co-transporter 2 inhibitorHF heart failurePRECLINICAL RESEARCH03 medical and health sciences0302 clinical medicineDM diabetes mellitusDiabetes mellitusInternal medicinemedicineEmpagliflozinMI-HF post-infarct heart failureGlycemicScience & TechnologyEjection fractionbusiness.industryNHE sodium-hydrogen exchangerANN artificial neural networkmedicine.diseaseHFrEF HF with reduced ejection fractionBlockadeXIAPmachine learning030104 developmental biologyMechanism of actionlcsh:RC666-701Heart failureCardiovascular System & CardiologyCardiologyRNAseq RNA sequencingempagtiflozinmedicine.symptomCardiology and Cardiovascular MedicinebusinessLife Sciences & BiomedicineJACC: Basic to Translational Science
researchProduct

Graphical Workflow System for Modification Calling by Machine Learning of Reverse Transcription Signatures

2019

Modification mapping from cDNA data has become a tremendously important approach in epitranscriptomics. So-called reverse transcription signatures in cDNA contain information on the position and nature of their causative RNA modifications. Data mining of, e.g. Illumina-based high-throughput sequencing data, is therefore fast growing in importance, and the field is still lacking effective tools. Here we present a versatile user-friendly graphical workflow system for modification calling based on machine learning. The workflow commences with a principal module for trimming, mapping, and postprocessing. The latter includes a quantification of mismatch and arrest rates with single-nucleotide re…

0301 basic medicinelcsh:QH426-470Downstream (software development)Computer scienceRT signatureMachine learningcomputer.software_genre[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyField (computer science)m1A03 medical and health sciencesRNA modifications0302 clinical medicineEpitranscriptomics[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsTechnology and CodeGalaxy platformGenetics (clinical)ComputingMilieux_MISCELLANEOUSbusiness.industryPrincipal (computer security)[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAutomationWatson–Crick faceVisualizationlcsh:Geneticsmachine learningComputingMethodologies_PATTERNRECOGNITION030104 developmental biologyWorkflow030220 oncology & carcinogenesisMolecular Medicine[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]TrimmingArtificial intelligencebusinesscomputer
researchProduct

Taxonomic Classification for Living Organisms Using Convolutional Neural Networks

2017

Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential f…

0301 basic medicinelcsh:QH426-470Taxonomic classificationADNCodificació Teoria de laBiologyBioinformaticsMachine learningcomputer.software_genreDNA; genes; taxonomic classification; convolutional neural networks; encodingConvolutional neural networkArticle03 medical and health sciences0302 clinical medicineBiologia -- ClassificacióEncoding (memory)convolutional neural networksGeneticstaxonomic classificationSensitivity (control systems)genesGenetics (clinical)ta113Biology -- Classificationbusiness.industryBiological classificationCoding theoryDNAencodinglcsh:Genetics030104 developmental biologyGenes030220 oncology & carcinogenesisEncodingConvolutional neural networksArtificial intelligenceCoding theorybusinesscomputerGens
researchProduct

Machine learning–XGBoost analysis of language networks to classify patients with epilepsy

2017

Our goal was to apply a statistical approach to allow the identification of atypical language patterns and to differentiate patients with epilepsy from healthy subjects, based on their cerebral activity, as assessed by functional MRI (fMRI). Patients with focal epilepsy show reorganization or plasticity of brain networks involved in cognitive functions, inducing ‘atypical’ (compared to ‘typical’ in healthy people) brain profiles. Moreover, some of these patients suffer from drug-resistant epilepsy, and they undergo surgery to stop seizures. The neurosurgeon should only remove the zone generating seizures and must preserve cognitive functions to avoid deficits. To preserve functions, one sho…

0301 basic medicinemedicine.medical_specialtyCognitive Neuroscience[SCCO.COMP]Cognitive science/Computer scienceAudiologyExtreme Gradient Boostinglcsh:Computer applications to medicine. Medical informaticsArticle03 medical and health sciencesEpilepsy0302 clinical medicineText miningMachine learningmedicineLanguagelcsh:Computer softwareEpilepsyCognitive mapReceiver operating characteristicbusiness.industryCognitionNeurophysiologymedicine.diseaseMLComputer Science ApplicationsStatistical classificationlcsh:QA76.75-76.765030104 developmental biologyNeurologyBinary classification[ SCCO.COMP ] Cognitive science/Computer sciencelcsh:R858-859.7Artificial intelligencePsychologybusiness030217 neurology & neurosurgeryAtypicalXGBoost
researchProduct