Search results for "magnetization"
showing 10 items of 550 documents
Switching of Slow Magnetic Relaxation Dynamics in Mononuclear Dysprosium(III) Compounds with Charge Density
2016
The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increa…
Hexanuclear manganese(III) single-molecule magnets based on oxime and azole-type ligands
2019
Abstract Two novel hexanuclear manganese(III) complexes belonging to the Mn6 family of single-molecule magnets (SMMs), of formulae [Mn6(μ3-O)2(H2N-sao)6(bta)2(EtOH)6]·2EtOH·4H2O (1) and [Mn6(μ3-O)2(H2N-sao)6(pta)2(EtOH)6]·4EtOH (2) [H2N-saoH2 = salicylamidoxime, bta = 1,2,3-benzotriazolate anion, pta = 5-phenyl-tetrazolate anion], have been synthesized and characterized structurally and magnetically. Both compounds crystallize in the triclinic system with space group P 1 ¯ (1 and 2). In their crystal packing, adjacent Mn6 complexes are connected through non-coordinating solvent molecules, which are H-bonded to N atoms of azole rings and –NH2 groups of salicylamidoxime ligand. The study of t…
2015
The energy barrier to magnetisation relaxation in single-molecule magnets (SMMs) proffers potential technological applications in high-density information storage and quantum computation. Leading candidates amongst complexes of 3d metals ions are the hexametallic family of complexes of formula [Mn6O2(R-sao)6(X)2(solvent)y] (saoH2=salicylaldoxime; X=mono-anion; y=4–6; R=H, Me, Et, and Ph). The recent synthesis of cationic [Mn6][ClO4]2 family members, in which the coordinating X ions were replaced with non-coordinating anions, opened the gateway to constructing families of novel [Mn6] salts in which the identity and nature of the charge balancing anions could be employed to alter the physical…
Highly Anisotropic Rhenium(IV) Complexes: New Examples of Mononuclear Single-Molecule Magnets
2013
The rhenium(IV) complex (NBu4)2[ReBr4(ox)] (1) (ox = oxalate and NBu4(+) = tetra-n-butylammonium cation) has been prepared and its crystal structure determined by X-ray diffraction. The structure is made up of discrete [ReBr4(ox)](2-) anions and bulky NBu4(+) cations. Each [ReBr4(ox)](2-) anion is surrounded by six NBu4(+) cations, which preclude any significant intermolecular contact between the anionic entities, the shortest rhenium···rhenium distance being 9.373(1) Å. Variable temperature dc and ac magnetic susceptibility measurements and field-dependent magnetization experiments on polycrystalline samples of 1 reveal the occurrence of highly anisotropic magnetically isolated Re(IV) cent…
Optimizing MRI contrast with B1 pulses using optimal control theory
2016
The variety of achievable contrasts by MRI makes it a highly flexible and valuable diagnostic tool. Contrast results from relaxation time differences, which are intrinsic properties of each tissue. Using optimal control theory, one can control the obtained contrast by applying excitation pulses that bring the magnetization in a user-defined target state. Simulation results are presented to illustrate the feasibility and the flexibility of using optimal contrast pulses. The robustness to experimental variable parameters such as field inhomogeneities is also studied. Finally, an in-vitro contrast experiment is performed on a small-animal MRI showing a reasonable match with the simulation resu…
Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets
2018
The concepts of Weyl fermions and topological semimetals emerging in three-dimensional momentum space are extensively explored owing to the vast variety of exotic properties that they give rise to. On the other hand, very little is known about semimetallic states emerging in two-dimensional magnetic materials, which present the foundation for both present and future information technology. Here, we demonstrate that including the magnetization direction into the topological analysis allows for a natural classification of topological semimetallic states that manifest in two-dimensional ferromagnets as a result of the interplay between spin-orbit and exchange interactions. We explore the emerg…
Towards large‐scale steady‐state enhanced nuclear magnetization with in situ detection
2021
Magnetic resonance in chemistry 59(12), 1208 - 1215 (2021). doi:10.1002/mrc.5161
Filling the Gap in the Metallacrown Family: The 9‐MC‐3 Chromium Metallacrown
2021
Abstract In this work, we report on a long‐sought missing complex in the metallacrown family. We synthesized and characterized the novel chromium metallacrown (MC) complex {CrIII(μ 2‐piv)3[9‐MCCr(III)N(shi)‐3](morph)3}⋅MeOH (in which shi3−=salicyl hydroxamate, piv=pivalate, and morph=morpholine). The MC with a 9‐MC‐3 cavity of kinetically inert chromium(III) ions was synthesized by a solvothermal reaction. Magnetization measurements reveal a high spin ground state.
Ferromagnetic coupled μ-phenoxo-μ-carboxylato heterodinuclear complexes based on the Cr(salen) moiety: Structural and magnetic characterization
2009
The synthesis, crystal structure, and magneto-chemical characterization of two new unprecedented μ-phenoxo-μ-carboxylato heterodinuclear complexes based on the Cr(salen) moiety (salen = N,N′-bis(salicylidene)ethylenediamine), [MII(O2C(CH3)3)(OH2)2(μ-O2C(CH3)3)(μ-salen)CrIII(O2C(CH3)3)], M = Ni (2), Co(3) are reported. The dinuclear complexes were obtained starting from the mononuclear trans-[Cr(salen)(CN)2]PPh4 (1), whose crystal structure is also reported. They show a trans arrangement of the Cr(salen) unit, bridging through the phenolate O atoms to a second metal center. An additional μ2-O2-carboxylato bridge and a further monodentating carboxylate ligand complete the roughly octahedral C…
A five-coordinate manganese(iii) complex of a salen type ligand with a positive axial anisotropy parameter D.
2017
A new high-spin d4 roughly trigonal–bipyramidal (TBP) manganese(III) complex with a salen type ligand (H2L), namely MnL(NCS)·0.4H2O, has been synthesised and characterised by elemental analysis, ESI mass spectrometry, IR and UV-vis spectroscopy, and spectroelectrochemistry. X-ray diffraction analysis revealed an axial compression of the approximate TBP. Temperature dependent magnetic susceptibility and variable-temperature variable-field (VTVH) magnetisation measurements, as well as high-frequency and -field EPR (HFEPR) spectroscopy, were used to accurately describe the magnetic properties of this complex and, in particular, determine the spin Hamiltonian parameters: g-values and the zero-f…