Search results for "manifold"

showing 10 items of 415 documents

Sard property for the endpoint map on some Carnot groups

2016

In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional manifold. The set of critical values for the endpoint map is also known as abnormal set, being the set of endpoints of abnormal extremals leaving the base point. We prove that a strong version of Sard's property holds for all step-2 Carnot groups and several other classes of Lie groups endowed with left-invariant distributions. Namely, we prove that the abnormal set lies in a proper analytic subvariety. In doing so we examine several characterizat…

Mathematics - Differential Geometry0209 industrial biotechnologyPure mathematics53C17 22F50 22E25 14M17SubvarietyGroup Theory (math.GR)02 engineering and technologySard's property01 natural sciencesSet (abstract data type)020901 industrial engineering & automationAbnormal curves; Carnot groups; Endpoint map; Polarized groups; Sard's property; Sub-Riemannian geometry; Analysis; Mathematical PhysicsMathematics - Metric GeometryFOS: MathematicsPoint (geometry)Canonical mapAbnormal curves; Carnot groups Endpoint map Polarized groups Sard's property Sub-Riemannian geometry Analysis0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsta111Polarized groupsCarnot groupLie groupEndpoint mapMetric Geometry (math.MG)Base (topology)ManifoldSub-Riemannian geometryDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groupsAbnormal curvesMathematics - Group TheoryAnalysis
researchProduct

Geodesic ray transform with matrix weights for piecewise constant functions

2019

We show injectivity of the geodesic X-ray transform on piecewise constant functions when the transform is weighted by a continuous matrix weight. The manifold is assumed to be compact and nontrapping of any dimension, and in dimension three and higher we assume a foliation condition. We make no assumption regarding conjugate points or differentiability of the weight. This extends recent results for unweighted transforms.

Mathematics - Differential Geometry44A12 65R32 53A99GeodesicGeneral Mathematics010102 general mathematicsMathematical analysisConjugate pointsmatrix weight01 natural sciencesinversio-ongelmatManifoldFoliation010101 applied mathematicsMatrix (mathematics)geodesic ray transformDifferential Geometry (math.DG)Dimension (vector space)FOS: MathematicsPiecewiseConstant function0101 mathematicsintegral geometryMathematics
researchProduct

Invariant distributions, Beurling transforms and tensor tomography in higher dimensions

2014

In the recent articles \cite{PSU1,PSU3}, a number of tensor tomography results were proved on two-dimensional manifolds. The purpose of this paper is to extend some of these methods to manifolds of any dimension. A central concept is the surjectivity of the adjoint of the geodesic ray transform, or equivalently the existence of certain distributions that are invariant under geodesic flow. We prove that on any Anosov manifold, one can find invariant distributions with controlled first Fourier coefficients. The proof is based on subelliptic type estimates and a Pestov identity. We present an alternative construction valid on manifolds with nonpositive curvature, based on the fact that a natur…

Mathematics - Differential GeometryBeurling transformDynamical Systems (math.DS)invariant distributionsMathematics::Geometric Topologymanifoldsmath.DGMathematics - Analysis of PDEsDifferential Geometry (math.DG)FOS: Mathematicstensor tomographyMathematics::Differential GeometryMathematics - Dynamical Systemsmath.APmath.DSAnalysis of PDEs (math.AP)
researchProduct

An index formula on manifolds with fibered cusp ends

2002

We consider a compact manifold whose boundary is a locally trivial fiber bundle and an associated pseudodifferential algebra that models fibered cusps at infinity. Using trace-like functionals that generate the 0-dimensional Hochschild cohomology groups, we express the index of a fully elliptic fibered cusp operator as the sum of a local contribution from the interior and a term that comes from the boundary. This answers the index problem formulated by Mazzeo and Melrose. We give a more precise answer in the case where the base of the boundary fiber bundle is the circle. In particular, for Dirac operators associated to a "product fibered cusp metric", the index is given by the integral of t…

Mathematics - Differential GeometryCusp (singularity)Pure mathematics58J40 58J20 58J28Boundary (topology)Fibered knotCohomologyManifoldEta invariantOperator (computer programming)Differential Geometry (math.DG)Mathematics::K-Theory and HomologyFOS: MathematicsFiber bundleGeometry and TopologyMathematics
researchProduct

Inverse problems for elliptic equations with power type nonlinearities

2021

We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…

Mathematics - Differential GeometryGLOBAL UNIQUENESSGeneral MathematicsConformal mapCALDERON PROBLEMTransversally anisotropic01 natural sciencesinversio-ongelmatMathematics - Analysis of PDEsSimple (abstract algebra)Euclidean geometryFOS: Mathematics111 MathematicsApplied mathematics0101 mathematicsMathematicsInverse boundary value problemosittaisdifferentiaaliyhtälötCalderón problemGeometrical opticsSemilinear equationApplied Mathematics010102 general mathematicstransversally anisotropicInverse problemManifold010101 applied mathematicssemilinear equationNonlinear systemDifferential Geometry (math.DG)inverse boundary value problemLinear equationAnalysis of PDEs (math.AP)Journal de Mathématiques Pures et Appliquées
researchProduct

Counting common perpendicular arcs in negative curvature

2013

Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic form…

Mathematics - Differential GeometryGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]37D40 37A25 53C22 30F4001 natural sciencesDomain (mathematical analysis)Bowen-Margulis measurecommon perpendicularequidistributiondecay of correlation0502 economics and businessortholength spectrummixingAsymptotic formulaSectional curvatureTangent vectorMathematics - Dynamical Systems0101 mathematicsExponential decayskinning measurelaskeminenMathematicsconvexityApplied Mathematicsta111010102 general mathematics05 social sciencesMathematical analysisRegular polygonnegative curvatureRiemannian manifoldGibbs measureManifoldKleinian groups[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]countingMathematics::Differential Geometrygeodesic arc050203 business & management
researchProduct

The Calderon problem in transversally anisotropic geometries

2016

We consider the anisotropic Calderon problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work \cite{DKSaU}, it was shown that a metric in a fixed conformal class is uniquely determined by boundary measurements under two conditions: (1) the metric is conformally transversally anisotropic (CTA), and (2) the transversal manifold is simple. In this paper we will consider geometries satisfying (1) but not (2). The first main result states that the boundary measurements uniquely determine a mixed Fourier transform / attenuated geodesic ray transform (or integral against a more general semiclassical…

Mathematics - Differential GeometryGeodesicGeneral MathematicsBoundary (topology)Conformal map01 natural sciencessymbols.namesakeMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsMathematicsCalderón problemRiemannian manifoldApplied Mathematicsta111010102 general mathematicsMathematical analysiscomplex geometrical optics solutionInverse problemRiemannian manifold010101 applied mathematicsboundary control methodFourier transformDifferential Geometry (math.DG)Transversal (combinatorics)Metric (mathematics)symbolsinverse boundary value problemAnalysis of PDEs (math.AP)
researchProduct

The Linearized Calderón Problem in Transversally Anisotropic Geometries

2017

In this article we study the linearized anisotropic Calderon problem. In a compact manifold with boundary, this problem amounts to showing that products of harmonic functions form a complete set. Assuming that the manifold is transversally anisotropic, we show that the boundary measurements determine an FBI type transform at certain points in the transversal manifold. This leads to recovery of transversal singularities in the linearized problem. The method requires a geometric condition on the transversal manifold related to pairs of intersecting geodesics, but it does not involve the geodesic X-ray transform which has limited earlier results on this problem.

Mathematics - Differential GeometryGeodesicGeneral MathematicsNEUMANN MAPBoundary (topology)Type (model theory)01 natural scienceslaw.inventionMathematics - Analysis of PDEslinearized anisotropic Calderón problemlaw35R30 35J25111 MathematicsFOS: Mathematics0101 mathematicsMathematics010102 general mathematicsMathematical analysisInverse problem010101 applied mathematicsHarmonic functionDifferential Geometry (math.DG)Transversal (combinatorics)Gravitational singularityMathematics::Differential GeometryINVERSE PROBLEMManifold (fluid mechanics)Analysis of PDEs (math.AP)
researchProduct

The Light Ray transform in Stationary and Static Lorentzian geometries

2019

Given a Lorentzian manifold, the light ray transform of a function is its integrals along null geodesics. This paper is concerned with the injectivity of the light ray transform on functions and tensors, up to the natural gauge for the problem. First, we study the injectivity of the light ray transform of a scalar function on a globally hyperbolic stationary Lorentzian manifold and prove injectivity holds if either a convex foliation condition is satisfied on a Cauchy surface on the manifold or the manifold is real analytic and null geodesics do not have cut points. Next, we consider the light ray transform on tensor fields of arbitrary rank in the more restrictive class of static Lorentzia…

Mathematics - Differential GeometryGeodesicinverse problems010102 general mathematicsMathematical analysislight ray transform01 natural sciencesRayFoliationManifoldinversio-ongelmatTensor field010101 applied mathematicsCauchy surfaceMathematics - Analysis of PDEsDifferential geometryDifferential Geometry (math.DG)FOS: Mathematicswave equationGeometry and TopologyMathematics::Differential Geometry0101 mathematicsScalar fieldMathematicsAnalysis of PDEs (math.AP)
researchProduct

Geodesic X-ray tomography for piecewise constant functions on nontrapping manifolds

2017

We show that on a two-dimensional compact nontrapping manifold with strictly convex boundary, a piecewise constant function is determined by its integrals over geodesics. In higher dimensions, we obtain a similar result if the manifold satisfies a foliation condition. These theorems are based on iterating a local uniqueness result. Our proofs are elementary.

Mathematics - Differential GeometryGeodesicinverse problemsGeneral Mathematics010102 general mathematicsGeodesic mapMathematical analysisBoundary (topology)16. Peace & justice01 natural sciencesManifoldFoliationinversio-ongelmatDifferential Geometry (math.DG)0103 physical sciencesPiecewiseFOS: Mathematics010307 mathematical physicsConstant functionMathematics::Differential Geometry0101 mathematicsConvex functionMathematics::Symplectic GeometryMathematics
researchProduct