Search results for "manifold"
showing 10 items of 415 documents
Sard property for the endpoint map on some Carnot groups
2016
In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional manifold. The set of critical values for the endpoint map is also known as abnormal set, being the set of endpoints of abnormal extremals leaving the base point. We prove that a strong version of Sard's property holds for all step-2 Carnot groups and several other classes of Lie groups endowed with left-invariant distributions. Namely, we prove that the abnormal set lies in a proper analytic subvariety. In doing so we examine several characterizat…
Geodesic ray transform with matrix weights for piecewise constant functions
2019
We show injectivity of the geodesic X-ray transform on piecewise constant functions when the transform is weighted by a continuous matrix weight. The manifold is assumed to be compact and nontrapping of any dimension, and in dimension three and higher we assume a foliation condition. We make no assumption regarding conjugate points or differentiability of the weight. This extends recent results for unweighted transforms.
Invariant distributions, Beurling transforms and tensor tomography in higher dimensions
2014
In the recent articles \cite{PSU1,PSU3}, a number of tensor tomography results were proved on two-dimensional manifolds. The purpose of this paper is to extend some of these methods to manifolds of any dimension. A central concept is the surjectivity of the adjoint of the geodesic ray transform, or equivalently the existence of certain distributions that are invariant under geodesic flow. We prove that on any Anosov manifold, one can find invariant distributions with controlled first Fourier coefficients. The proof is based on subelliptic type estimates and a Pestov identity. We present an alternative construction valid on manifolds with nonpositive curvature, based on the fact that a natur…
An index formula on manifolds with fibered cusp ends
2002
We consider a compact manifold whose boundary is a locally trivial fiber bundle and an associated pseudodifferential algebra that models fibered cusps at infinity. Using trace-like functionals that generate the 0-dimensional Hochschild cohomology groups, we express the index of a fully elliptic fibered cusp operator as the sum of a local contribution from the interior and a term that comes from the boundary. This answers the index problem formulated by Mazzeo and Melrose. We give a more precise answer in the case where the base of the boundary fiber bundle is the circle. In particular, for Dirac operators associated to a "product fibered cusp metric", the index is given by the integral of t…
Inverse problems for elliptic equations with power type nonlinearities
2021
We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…
Counting common perpendicular arcs in negative curvature
2013
Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic form…
The Calderon problem in transversally anisotropic geometries
2016
We consider the anisotropic Calderon problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work \cite{DKSaU}, it was shown that a metric in a fixed conformal class is uniquely determined by boundary measurements under two conditions: (1) the metric is conformally transversally anisotropic (CTA), and (2) the transversal manifold is simple. In this paper we will consider geometries satisfying (1) but not (2). The first main result states that the boundary measurements uniquely determine a mixed Fourier transform / attenuated geodesic ray transform (or integral against a more general semiclassical…
The Linearized Calderón Problem in Transversally Anisotropic Geometries
2017
In this article we study the linearized anisotropic Calderon problem. In a compact manifold with boundary, this problem amounts to showing that products of harmonic functions form a complete set. Assuming that the manifold is transversally anisotropic, we show that the boundary measurements determine an FBI type transform at certain points in the transversal manifold. This leads to recovery of transversal singularities in the linearized problem. The method requires a geometric condition on the transversal manifold related to pairs of intersecting geodesics, but it does not involve the geodesic X-ray transform which has limited earlier results on this problem.
The Light Ray transform in Stationary and Static Lorentzian geometries
2019
Given a Lorentzian manifold, the light ray transform of a function is its integrals along null geodesics. This paper is concerned with the injectivity of the light ray transform on functions and tensors, up to the natural gauge for the problem. First, we study the injectivity of the light ray transform of a scalar function on a globally hyperbolic stationary Lorentzian manifold and prove injectivity holds if either a convex foliation condition is satisfied on a Cauchy surface on the manifold or the manifold is real analytic and null geodesics do not have cut points. Next, we consider the light ray transform on tensor fields of arbitrary rank in the more restrictive class of static Lorentzia…
Geodesic X-ray tomography for piecewise constant functions on nontrapping manifolds
2017
We show that on a two-dimensional compact nontrapping manifold with strictly convex boundary, a piecewise constant function is determined by its integrals over geodesics. In higher dimensions, we obtain a similar result if the manifold satisfies a foliation condition. These theorems are based on iterating a local uniqueness result. Our proofs are elementary.