Search results for "math-ph"

showing 10 items of 525 documents

Etude numérique d'équations aux dérivées partielles non linéaires et dispersives

2011

Numerical analysis becomes a powerful resource in the study of partial differential equations (PDEs), allowing to illustrate existing theorems and find conjectures. By using sophisticated methods, questions which seem inaccessible before, like rapid oscillations or blow-up of solutions can be addressed in an approached way. Rapid oscillations in solutions are observed in dispersive PDEs without dissipation where solutions of the corresponding PDEs without dispersion present shocks. To solve numerically these oscillations, the use of efficient methods without using artificial numerical dissipation is necessary, in particular in the study of PDEs in some dimensions, done in this work. As stud…

Davey-Stewartson systems[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]equations dispersivesdispersive shocksexponential time-differencing[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]spectral methodschocs dispersifsnumerical methodsdispersive equationsNo english keywordssplit stepschemas de decomposition d'operateursmethodes spectrales[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Kadomtsev-Petviashvili equationintegrating factor methodparallel computing[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Pas de mot clé en français[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]methodes numeriquesblow upequation de Kadomtsev-PetviashviliIntegrateurs exponentielssystemes de Davey-Stewartsoncalcul parallele
researchProduct

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct

Analytical solution for multisingular vortex Gaussian beams: The mathematical theory of scattering modes

2016

We present a novel procedure to solve the Schr\"odinger equation, which in optics is the paraxial wave equation, with an initial multisingular vortex Gaussian beam. This initial condition has a number of singularities in a plane transversal to propagation embedded in a Gaussian beam. We use the scattering modes, which are solutions of the paraxial wave equation that can be combined straightforwardly to express the initial condition and therefore permit to solve the problem. To construct the scattering modes one needs to obtain a particular set of polynomials, which play an analogous role than Laguerre polynomials for Laguerre-Gaussian modes. We demonstrate here the recurrence relations need…

DiffractionGaussianFOS: Physical sciences01 natural sciencesSchrödinger equation010309 opticssymbols.namesakeOptics0103 physical sciencesInitial value problem010306 general physicsMathematical PhysicsPhysicsQuantum Physicsbusiness.industryMathematical analysisMathematical Physics (math-ph)Atomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVortexQuantum Gases (cond-mat.quant-gas)symbolsLaguerre polynomialsCondensed Matter - Quantum GasesbusinessQuantum Physics (quant-ph)Fresnel diffractionPhysics - OpticsGaussian beamOptics (physics.optics)
researchProduct

Levy targeting and the principle of detailed balance

2011

We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets a correspondence between above two stochastic dynamical systems, within which we address a (stochastic) targeting problem for an arbitrary stability index μ ε (0,2) of symmetric Lévy drivers. Namely, given a probability density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF is actually a long-time asymptotic (target) …

Diffusion equationDynamical systems theoryMovementNormal DistributionFOS: Physical sciencesDiffusionOscillometryMaster equationFOS: MathematicsApplied mathematicsCondensed Matter - Statistical MechanicsMathematical PhysicsMathematicsStochastic ProcessesModels StatisticalStatistical Mechanics (cond-mat.stat-mech)SemigroupStochastic processPhysicsProbability (math.PR)Mathematical analysisCauchy distributionDetailed balanceMathematical Physics (math-ph)Markov ChainsTransformation (function)ThermodynamicsAlgorithmsMathematics - Probability
researchProduct

Fixed Points in Topological *-Algebras of Unbounded Operators

2001

We discuss some results concerning fixed point equations in the setting of topological *-algebras of unbounded operators. In particular, an existence result is obtained for what we have called {\em weak $\tau$ strict contractions}, and some continuity properties of these maps are discussed. We also discuss possible applications of our procedure to quantum mechanical systems.

Discrete mathematics47H10; 46N50Topological algebraGeneral MathematicsMathematics - Operator AlgebrasFOS: Physical sciencesMathematical Physics (math-ph)Fixed pointTopologyFixed-point propertyFixed point equationOperator algebraFOS: Mathematics46N50Operator Algebras (math.OA)Settore MAT/07 - Fisica MatematicaQuantumMathematical Physics47H10operator algebrasMathematics
researchProduct

Nonlinear embeddings: Applications to analysis, fractals and polynomial root finding

2016

We introduce $\mathcal{B}_{\kappa}$-embeddings, nonlinear mathematical structures that connect, through smooth paths parameterized by $\kappa$, a finite or denumerable set of objects at $\kappa=0$ (e.g. numbers, functions, vectors, coefficients of a generating function...) to their ordinary sum at $\kappa \to \infty$. We show that $\mathcal{B}_{\kappa}$-embeddings can be used to design nonlinear irreversible processes through this connection. A number of examples of increasing complexity are worked out to illustrate the possibilities uncovered by this concept. These include not only smooth functions but also fractals on the real line and on the complex plane. As an application, we use $\mat…

Discrete mathematicsPolynomialGeneral MathematicsApplied MathematicsGeneral Physics and AstronomyParameterized complexityFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Pattern Formation and Solitons (nlin.PS)Nonlinear Sciences - Pattern Formation and Solitons01 natural sciencesNonlinear Sciences - Adaptation and Self-Organizing Systems010305 fluids & plasmasProperties of polynomial rootsNonlinear system0103 physical sciencesCountable setConnection (algebraic framework)010306 general physicsComplex planeReal lineAdaptation and Self-Organizing Systems (nlin.AO)Mathematical PhysicsMathematics
researchProduct

Representable linear functionals on partial *-algebras

2012

A GNS-like *-representation of a partial *-algebra \({{\mathfrak A}}\) defined by certain representable linear functionals on \({{\mathfrak A}}\) is constructed. The study of the interplay with the GNS construction associated with invariant positive sesquilinear forms (ips) leads to the notions of pre-core and of singular form. It is shown that a positive sesquilinear form with pre-core always decomposes into the sum of an ips form and a singular one.

Discrete mathematicsPure mathematicsrepresentationSesquilinear formMathematics::Operator AlgebrasGeneral MathematicsSingular formMathematics - Operator AlgebrasFOS: Physical sciencesMathematical Physics (math-ph)partial *-algebrasSettore MAT/05 - Analisi Matematicapositive linear functionalFOS: MathematicsInvariant (mathematics)Mathematics::Representation TheoryOperator Algebras (math.OA)Settore MAT/07 - Fisica MatematicaMathematical PhysicsMathematics
researchProduct

Behavior of gap solitons in anharmonic lattices

2017

International audience; Using the theory of bifurcation, we provide and find gap soliton dynamics in a nonlinear Klein-Gordon model with anharmonic, cubic, and quartic interactions immersed in a parametrized on-site substrate potential. The case of a deformable substrate potential allows theoretical adaptation of the model to various physical situations. Nonconvex interactions in lattice systems lead to a number of interesting phenomena that cannot be produced with linear coupling alone. By investigating the dynamical behavior and bifurcations of solutions of the planar dynamical systems, we derive a variety of exotic solutions corresponding to the phase trajectories under different paramet…

Dynamical systems theory[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]01 natural sciencesFrenkel-Kontorova Model010305 fluids & plasmasPlanar[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]Quartic functionLattice (order)Dimensional Diatomic Lattice0103 physical sciences[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]010306 general physicsBifurcationPhysicsAnharmonicity[ PHYS.MECA.MEFL ] Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph]Systems[ PHYS.PHYS.PHYS-PLASM-PH ] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]Nonlinear systemBreathersClassical mechanics[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]SolitonDefectAtomic ChainPotentials
researchProduct

On the co-orbital asteroids in the solar system: medium-term timescale analysis of the quasi-coplanar objects

2023

The focus of this work is the current distribution of asteroids in co-orbital motion with Venus, Earth and Jupiter, under a quasi-coplanar configuration and for a medium-term timescale of the order of 900 years. A co-orbital trajectory is a heliocentric orbit trapped in a 1:1 mean-motion resonance with a given planet. As such, to model it this work considers the Restricted Three-Body Problem in the planar circular case with the help of averaging techniques. The domain of each co-orbital regime, that is, the quasi-satellite motion, the horseshoe motion and the tadpole motion, can be neatly defined by means of an integrable model and a simple two-dimensional map, that is invariant with respec…

Earth and Planetary Astrophysics (astro-ph.EP)FOS: Physical sciencesAstronomy and AstrophysicsMathematical Physics (math-ph)AsteroidsDynamicsOrbitalSpace and Planetary ScienceResonancesTrojan asteroidsCelestial mechanicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct

The renormalized electron mass in non-relativistic quantum electrodynamics

2007

This work addresses the problem of infrared mass renormalization for a scalar electron in a translation-invariant model of non-relativistic QED. We assume that the interaction of the electron with the quantized electromagnetic field comprises a fixed ultraviolet regularization and an infrared regularization parametrized by $\sigma>0$. For the value $p=0$ of the conserved total momentum of electron and photon field, bounds on the renormalized mass are established which are uniform in $\sigma\to0$, and the existence of a ground state is proved. For $|p|>0$ sufficiently small, bounds on the renormalized mass are derived for any fixed $\sigma>0$. A key ingredient of our proofs is the operator-t…

Electromagnetic fieldQuantum electrodynamics010102 general mathematicsFOS: Physical sciencesElectronMathematical Physics (math-ph)Spectral analysisRenormalization group01 natural sciences81T16Mass renormalization3. Good healthRenormalizationIsospectralRegularization (physics)Quantum mechanics0103 physical sciencesFunctional renormalization group010307 mathematical physics0101 mathematicsGround stateRenormalization group methodsAnalysisMathematical PhysicsMathematicsJournal of Functional Analysis
researchProduct