Search results for "math-ph"
showing 10 items of 525 documents
Etude numérique d'équations aux dérivées partielles non linéaires et dispersives
2011
Numerical analysis becomes a powerful resource in the study of partial differential equations (PDEs), allowing to illustrate existing theorems and find conjectures. By using sophisticated methods, questions which seem inaccessible before, like rapid oscillations or blow-up of solutions can be addressed in an approached way. Rapid oscillations in solutions are observed in dispersive PDEs without dissipation where solutions of the corresponding PDEs without dispersion present shocks. To solve numerically these oscillations, the use of efficient methods without using artificial numerical dissipation is necessary, in particular in the study of PDEs in some dimensions, done in this work. As stud…
On critical behaviour in generalized Kadomtsev-Petviashvili equations
2016
International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…
Analytical solution for multisingular vortex Gaussian beams: The mathematical theory of scattering modes
2016
We present a novel procedure to solve the Schr\"odinger equation, which in optics is the paraxial wave equation, with an initial multisingular vortex Gaussian beam. This initial condition has a number of singularities in a plane transversal to propagation embedded in a Gaussian beam. We use the scattering modes, which are solutions of the paraxial wave equation that can be combined straightforwardly to express the initial condition and therefore permit to solve the problem. To construct the scattering modes one needs to obtain a particular set of polynomials, which play an analogous role than Laguerre polynomials for Laguerre-Gaussian modes. We demonstrate here the recurrence relations need…
Levy targeting and the principle of detailed balance
2011
We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets a correspondence between above two stochastic dynamical systems, within which we address a (stochastic) targeting problem for an arbitrary stability index μ ε (0,2) of symmetric Lévy drivers. Namely, given a probability density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF is actually a long-time asymptotic (target) …
Fixed Points in Topological *-Algebras of Unbounded Operators
2001
We discuss some results concerning fixed point equations in the setting of topological *-algebras of unbounded operators. In particular, an existence result is obtained for what we have called {\em weak $\tau$ strict contractions}, and some continuity properties of these maps are discussed. We also discuss possible applications of our procedure to quantum mechanical systems.
Nonlinear embeddings: Applications to analysis, fractals and polynomial root finding
2016
We introduce $\mathcal{B}_{\kappa}$-embeddings, nonlinear mathematical structures that connect, through smooth paths parameterized by $\kappa$, a finite or denumerable set of objects at $\kappa=0$ (e.g. numbers, functions, vectors, coefficients of a generating function...) to their ordinary sum at $\kappa \to \infty$. We show that $\mathcal{B}_{\kappa}$-embeddings can be used to design nonlinear irreversible processes through this connection. A number of examples of increasing complexity are worked out to illustrate the possibilities uncovered by this concept. These include not only smooth functions but also fractals on the real line and on the complex plane. As an application, we use $\mat…
Representable linear functionals on partial *-algebras
2012
A GNS-like *-representation of a partial *-algebra \({{\mathfrak A}}\) defined by certain representable linear functionals on \({{\mathfrak A}}\) is constructed. The study of the interplay with the GNS construction associated with invariant positive sesquilinear forms (ips) leads to the notions of pre-core and of singular form. It is shown that a positive sesquilinear form with pre-core always decomposes into the sum of an ips form and a singular one.
Behavior of gap solitons in anharmonic lattices
2017
International audience; Using the theory of bifurcation, we provide and find gap soliton dynamics in a nonlinear Klein-Gordon model with anharmonic, cubic, and quartic interactions immersed in a parametrized on-site substrate potential. The case of a deformable substrate potential allows theoretical adaptation of the model to various physical situations. Nonconvex interactions in lattice systems lead to a number of interesting phenomena that cannot be produced with linear coupling alone. By investigating the dynamical behavior and bifurcations of solutions of the planar dynamical systems, we derive a variety of exotic solutions corresponding to the phase trajectories under different paramet…
On the co-orbital asteroids in the solar system: medium-term timescale analysis of the quasi-coplanar objects
2023
The focus of this work is the current distribution of asteroids in co-orbital motion with Venus, Earth and Jupiter, under a quasi-coplanar configuration and for a medium-term timescale of the order of 900 years. A co-orbital trajectory is a heliocentric orbit trapped in a 1:1 mean-motion resonance with a given planet. As such, to model it this work considers the Restricted Three-Body Problem in the planar circular case with the help of averaging techniques. The domain of each co-orbital regime, that is, the quasi-satellite motion, the horseshoe motion and the tadpole motion, can be neatly defined by means of an integrable model and a simple two-dimensional map, that is invariant with respec…
The renormalized electron mass in non-relativistic quantum electrodynamics
2007
This work addresses the problem of infrared mass renormalization for a scalar electron in a translation-invariant model of non-relativistic QED. We assume that the interaction of the electron with the quantized electromagnetic field comprises a fixed ultraviolet regularization and an infrared regularization parametrized by $\sigma>0$. For the value $p=0$ of the conserved total momentum of electron and photon field, bounds on the renormalized mass are established which are uniform in $\sigma\to0$, and the existence of a ground state is proved. For $|p|>0$ sufficiently small, bounds on the renormalized mass are derived for any fixed $\sigma>0$. A key ingredient of our proofs is the operator-t…