Search results for "math.MP"

showing 10 items of 115 documents

Instanton Counting, Quantum Geometry and Algebra

2020

The aim of this memoir for "Habilitation \`a Diriger des Recherches" is to present quantum geometric and algebraic aspects of supersymmetric gauge theory, which emerge from non-perturbative nature of the vacuum structure induced by instantons. We start with a brief summary of the equivariant localization of the instanton moduli space, and show how to obtain the instanton partition function and its generalization to quiver gauge theory and supergroup gauge theory in three ways: the equivariant index formula, the contour integral formula, and the combinatorial formula. We then explore the geometric description of $\mathcal{N} = 2$ gauge theory based on Seiberg-Witten geometry together with it…

High Energy Physics - TheoryQuiver gauge theoryThéorie de jauje de carquoisHigh Energy Physics::Lattice[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesQuiver W-algebraqq-characterW-algébre de carquoisHigh Energy Physics::TheorySupergroupgauge theory[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]InstantonMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Representation Theory (math.RT)Algébre vertexComputingMilieux_MISCELLANEOUSMathematical PhysicsSeiberg–Witten geometryIntegrable systemqq-caractéreVertex operator algebra[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics::PhenomenologyMathematical Physics (math-ph)Localization équivarianteGéométrie de Seiberg–WittenHigh Energy Physics - Theory (hep-th)Théoriede jauje de supergroupe[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]Systèmes intégrablesEquivariant localizationMathematics - Representation Theory
researchProduct

Integrating over quiver variety and BPS/CFT correspondence

2019

We show the vertex operator formalism for the quiver gauge theory partition function and the $qq$-character of highest-weight module on quiver, both associated with the integral over the quiver variety.

High Energy Physics - Theorypartition function[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesalgebraSupersymmetric gauge theoryQuiver variety[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics - Quantum AlgebraInstantonFOS: MathematicsQuantum Algebra (math.QA)Representation Theory (math.RT)Mathematics::Representation Theoryfield theory: conformalVertex operator algebra[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]W-algebraMathematics::Rings and Algebras[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]operator: vertexgauge field theory: quiverConformal field theoryHigh Energy Physics - Theory (hep-th)BPS[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]instantonsMathematics - Representation Theory
researchProduct

Hysteresis Model of Unconscious-Conscious Interconnection: Exploring Dynamics on m-Adic Trees

2015

The theoretical model outlined in this paper, has been experimentally validated by: H. Kim ,J-Y. Moon ,G.A. Mashour & U. Lee, ''Mechanisms of hysteresis in human brain networks during transitions of consciousness and unconsciousness: Theoretical principles and empirical evidence'', PLOS-Computational Biology, August 30, 2018, https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006424; International audience; In this brief note, we focus attention on a possible implementation of a basic hysteretic pattern (the Preisach one), suitably generalized, into a formal model of unconscious-conscious interconnection and based on representation of mental entities by m-adic numbers. …

InterconnectionhysteresiUnconscious mindm-adic treeGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Representation (systemics)unconscious[SHS.PSY]Humanities and Social Sciences/Psychologyunconsciou[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]Focus (linguistics)AlgebraHysteresishysteresisp-adic treeDynamics (music)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Algebra over a field[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]MathematicsPreisach model
researchProduct

On the semiclassical limit of the defocusing Davey-Stewartson II equation

2018

Inverse scattering is the most powerful tool in theory of integrable systems. Starting in the late sixties resounding great progress was made in (1+1) dimensional problems with many break-through results as on soliton interactions. Naturally the attention in recent years turns towards higher dimensional problems as the Davey-Stewartson equations, an integrable generalisation of the (1+1)-dimensionalcubic nonlinear Schrödinger equation. The defocusing Davey-Stewartson II equation, in its semi-classical limit has been shown in numerical experiments to exhibit behavior that qualitatively resembles that of its one-dimensional reduction, namely the generation of a dispersive shock wave: smooth i…

Inverse problemsLimite semiclassique[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Semiclassical limitProblèmes inversesD-Bar problemsDavey-Stewartson equations[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Équations de Davey-Stewartson[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Problèmes D-Bar
researchProduct

Families of rational solutions to the KPI equation of order 7 depending on 12 parameters

2017

International audience; We construct in this paper, rational solutions as a quotient of two determinants of order 2N = 14 and we obtain what we call solutions of order N = 7 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 112 in x, y and t depending on 12 parameters. The maximum of modulus of these solutions at order 7 is equal to 2(2N + 1)2= 450. We make the study of the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6. When all these parameters grow, triangle and ring structures are obtained.

KPI equationWronskians[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Rogue waves[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]LumpsFredholm determinantsPACS numbers: 33Q55 37K10 47.10A- 47.35.Fg 47.54.Bd
researchProduct

Rational solutions to the KPI equation of order 7 depending on 12 parameters

2018

We construct in this paper, rational solutions as a quotient of two determinants of order 2N = 14 and we obtain what we call solutions of order N = 7 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 112 in x, y and t depending on 12 parameters. The maximum of modulus of these solutions at order 7 is equal to 2(2N + 1) 2 = 450. We make the study of the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6. When all these parameters grow, triangle and ring structures are obtained.

KPI equation[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Wronskians[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]rogue waveslumps[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinants
researchProduct

Rational solutions to the KdV equation depending on multi-parameters

2021

We construct multi-parametric rational solutions to the KdV equation. For this, we use solutions in terms of exponentials depending on several parameters and take a limit when one of these parameters goes to 0. Here we present degenerate rational solutions and give a result without the presence of a limit as a quotient of polynomials depending on 3N parameters. We give the explicit expressions of some of these rational solutions.

KdV equation47.35.Fg47.10A-rational solutions PACS numbers : 33Q55[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]47.54.Bd[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K10
researchProduct

Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case

2021

International audience; We degenerate the finite gap solutions of the KdV equation from the general formulation given in terms of abelian functions when the gaps tend to points, to get solutions to the KdV equation given in terms of Fredholm determinants and wronskians. For this we establish a link between Riemann theta functions, Fredholm determinants and wronskians. This gives the bridge between the algebro-geometric approach and the Darboux dressing method.We construct also multi-parametric degenerate rational solutions of this equation.

KdV equationPure mathematicsGeneral Physics and AstronomyFredholm determinantTheta function01 natural sciencessymbols.namesakeWronskians[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinant0103 physical sciencesRiemann theta functions0101 mathematicsAbelian group010306 general physicsKorteweg–de Vries equationMathematical PhysicsMathematicsWronskianRiemann surface010102 general mathematicsDegenerate energy levelsRiemann hypothesisNonlinear Sciences::Exactly Solvable and Integrable SystemsRiemann surfacesymbolsGeometry and Topology
researchProduct

Empirical measures and Vlasov hierarchies

2013

The present note reviews some aspects of the mean field limit for Vlasov type equations with Lipschitz continuous interaction kernel. We discuss in particular the connection between the approach involving the N-particle empirical measure and the formulation based on the BBGKY hierarchy. This leads to a more direct proof of the quantitative estimates on the propagation of chaos obtained on a more general class of interacting systems in [S.Mischler, C. Mouhot, B. Wennberg, arXiv:1101.4727]. Our main result is a stability estimate on the BBGKY hierarchy uniform in the number of particles, which implies a stability estimate in the sense of the Monge-Kantorovich distance with exponent 1 on the i…

MSC 82C05 (35F25 28A33)[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciencesVlasov type equation Mean-field limit Empirical measure BBGKY hierarchy Monge-Kantorovich distanceMathematics - Analysis of PDEs[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Applied mathematicsMonge-Kantorovich distanceDirect proof0101 mathematicsEmpirical measureMathematical PhysicsMean field limitMathematicsNumerical AnalysisHierarchy010102 general mathematicsVlasov type equationMathematical Physics (math-ph)Empirical measureBBGKY hierarchyLipschitz continuity010101 applied mathematicsKernel (algebra)Uniqueness theorem for Poisson's equationBBGKY hierarchyModeling and SimulationExponent82C05 (35F25 28A33)Analysis of PDEs (math.AP)Kinetic & Related Models
researchProduct

The geodesic X-ray transform with matrix weights

2019

Consider a compact Riemannian manifold of dimension $\geq 3$ with strictly convex boundary, such that the manifold admits a strictly convex function. We show that the attenuated ray transform in the presence of an arbitrary connection and Higgs field is injective modulo the natural obstruction for functions and one-forms. We also show that the connection and the Higgs field are uniquely determined by the scattering relation modulo gauge transformations. The proofs involve a reduction to a local result showing that the geodesic X-ray transform with a matrix weight can be inverted locally near a point of strict convexity at the boundary, and a detailed analysis of layer stripping arguments ba…

Mathematics - Differential GeometryPure mathematicsGeodesicGeneral Mathematicsmath-phBoundary (topology)FOS: Physical sciences01 natural sciencesinversio-ongelmatintegraaliyhtälötMathematics - Analysis of PDEsmath.MPFOS: MathematicsSectional curvature0101 mathematicsMathematical Physicsmath.APMathematicsX-ray transform010102 general mathematicsMathematical Physics (math-ph)Riemannian manifoldPure MathematicsManifoldConnection (mathematics)math.DGDifferential Geometry (math.DG)monistotConvex functionAnalysis of PDEs (math.AP)
researchProduct