Search results for "math.MP"

showing 10 items of 115 documents

Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators

2018

This paper deals with collisionless transport equationsin bounded open domains $\Omega \subset \R^{d}$ $(d\geq 2)$ with $\mathcal{C}^{1}$ boundary $\partial \Omega $, orthogonallyinvariant velocity measure $\bm{m}(\d v)$ with support $V\subset \R^{d}$ and stochastic partly diffuse boundary operators $\mathsf{H}$ relating the outgoing andincoming fluxes. Under very general conditions, such equations are governedby stochastic $C_{0}$-semigroups $\left( U_{\mathsf{H}}(t)\right) _{t\geq 0}$ on $%L^{1}(\Omega \times V,\d x \otimes \bm{m}(\d v)).$ We give a general criterion of irreducibility of $%\left( U_{\mathsf{H}}(t)\right) _{t\geq 0}$ and we show that, under very natural assumptions, if an …

PhysicsStochastic semigroupApplied MathematicsKinetic equation010102 general mathematicsConvergence to equilibriumZero (complex analysis)Boundary (topology)01 natural sciencesMeasure (mathematics)010101 applied mathematicsConvergence to equilibrium; Kinetic equation; Stochastic semigroupFlow (mathematics)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Bounded functionCompactness theorem[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Ergodic theory[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematicsInvariant (mathematics)Mathematical PhysicsAnalysisMathematical physicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

Rational solutions to the KPI equation and multi rogue waves

2016

Abstract We construct here rational solutions to the Kadomtsev–Petviashvili equation (KPI) as a quotient of two polynomials in x , y and t depending on several real parameters. This method provides an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2 N ( N + 1 ) in x , y and t depending on 2 N − 2 real parameters for each positive integer N . We give explicit expressions of the solutions in the simplest cases N = 1 and N = 2 and we study the patterns of their modulus in the ( x , y ) plane for different values of time t and parameters.

Physics[PHYS]Physics [physics]Pure mathematics[ PHYS ] Physics [physics]Hierarchy (mathematics)Plane (geometry)Rogue wavesRational solutions[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]General Physics and Astronomy01 natural sciences010305 fluids & plasmasKPI equationInteger[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesRogue wave010306 general physicsQuotient
researchProduct

Geometric Origin of the Tennis Racket Effect

2020

The tennis racket effect is a geometric phenomenon which occurs in a free rotation of a three-dimensional rigid body. In a complex phase space, we show that this effect originates from a pole of a Riemann surface and can be viewed as a result of the Picard-Lefschetz formula. We prove that a perfect twist of the racket is achieved in the limit of an ideal asymmetric object. We give upper and lower bounds to the twist defect for any rigid body, which reveals the robustness of the effect. A similar approach describes the Dzhanibekov effect in which a wing nut, spinning around its central axis, suddenly makes a half-turn flip around a perpendicular axis and the Monster flip, an almost impossibl…

Physics[PHYS]Physics [physics]Riemann surfaceGeneral Physics and AstronomyClassical Physics (physics.class-ph)FOS: Physical sciencesMathematical Physics (math-ph)Physics - Classical PhysicsRigid body01 natural sciencesUpper and lower boundssymbols.namesakePerpendicular AxisClassical mechanics[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Phase space0103 physical sciencesRacketsymbolsIdeal (ring theory)Twist010306 general physicscomputerMathematical Physicscomputer.programming_language
researchProduct

On the numerical evaluation of algebro-geometric solutions to integrable equations

2011

Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated to real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis no…

Pure mathematicsExplicit formulaeGeneral Physics and AstronomyFOS: Physical sciencesTheta functionHomology (mathematics)37K10 14Q05 35Q5501 natural sciencessymbols.namesakeMathematics - Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: Mathematics0101 mathematics[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsAlgebraic Geometry (math.AG)Mathematical PhysicsMathematicsPartial differential equationNonlinear Sciences - Exactly Solvable and Integrable SystemsApplied MathematicsRiemann surface010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Nonlinear systemsymbolsAlgebraic curveExactly Solvable and Integrable Systems (nlin.SI)Symplectic geometry
researchProduct

New degeneration of Fay's identity and its application to integrable systems

2011

In this paper, we find a new degenerated version of Fay's trisecant identity; this degeneration corresponds to the limit when the four points entering the trisecant identity coincide pairwise. This degenerated version of Fay's identity is used to construct algebro-geometric solutions to the multi-component nonlinear Schrodinger equation. This identity also leads to an independent derivation of algebro-geometric solutions to the Davey–Stewartson equations previously obtained in [17] in the framework of the Krichever scheme. We also give the condition of smoothness of the obtained solutions.

Pure mathematicsIntegrable systemGeneral MathematicsMathematics::Analysis of PDEsFOS: Physical sciences01 natural sciencesIdentity (music)Mathematics - Algebraic Geometrysymbols.namesakeMathematics::Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: MathematicsLimit (mathematics)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematics010306 general physicsAlgebraic Geometry (math.AG)Nonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsMathematicsSmoothness (probability theory)010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Nonlinear Sciences::Exactly Solvable and Integrable SystemsScheme (mathematics)symbolsPairwise comparison[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Large-x Analysis of an Operator-Valued Riemann–Hilbert Problem

2015

International audience; The purpose of this paper is to push forward the theory of operator-valued Riemann-Hilbert problems and demonstrate their effectiveness in respect to the implementation of a non-linear steepest descent method a la Deift-Zhou. In this paper, we demonstrate that the operator-valued Riemann-Hilbert problem arising in the characterization of so-called c-shifted integrable integral operators allows one to extract the large-x asymptotics of the Fredholm determinant associated with such operators.

Pure mathematicsIntegrable systemNonlinear schrodinger-equationMathematics::Complex VariablesGeneral Mathematics010102 general mathematicsMathematicsofComputing_NUMERICALANALYSIS[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinantImpenetrable bose-gas[ MATH.MATH-FA ] Mathematics [math]/Functional Analysis [math.FA][MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencessymbols.namesakeRiemann hypothesisOperator (computer programming)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesHilbert's problemssymbolsMethod of steepest descentRiemann–Hilbert problem010307 mathematical physics0101 mathematicsMathematics
researchProduct

Analytic Bergman operators in the semiclassical limit

2018

Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted $L^2$ spaces with analytic weights, and show that their kernel functions admit an asymptotic expansion in the class of analytic symbols. As a corollary, we obtain new estimates for asymptotic expansions of the Bergman kernel on $\mathbb{C}^n$ and for high powers of ample holomorphic line bundles over compact complex manifolds.

Pure mathematicsadjoint operatorsMicrolocal analysis32A2501 natural sciences[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Limit (mathematics)Bergman projectionComplex Variables (math.CV)[MATH]Mathematics [math]Mathematics::Symplectic GeometryMathematical PhysicsBergman kernelMathematicsasymptotic expansionweighted L2-estimates58J40[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]Mathematical Physics (math-ph)16. Peace & justiceFunctional Analysis (math.FA)Mathematics - Functional Analysisasymptoticstheoremkernelanalytic pseudodifferential operator010307 mathematical physicsAsymptotic expansion47B35classical limitAnalysis of PDEs (math.AP)Toeplitz operatorGeneral Mathematics70H15Holomorphic functionFOS: Physical sciencesSemiclassical physicsKähler manifold[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]analytic symbolsMathematics - Analysis of PDEskahler-metrics0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematics32W25space35A27Kähler manifoldmicrolocal analysisToeplitz operatorquantizationsemiclassical analysis
researchProduct

Scattering resonances and Pseudospectrum : stability and completeness aspects in optical and gravitational systems

2022

The general context of this thesis is an effort to establish a bridge between gravitational andoptical physics, specifically in the context of scattering problems using as a guideline concepts andtools taken from the theory of non-self-adjoint operators. Our focus is on Quasi-Normal Modes(QNMs), namely the natural resonant modes of open leaky structures under linear perturbationssubject to outgoing boundary conditions. They also are referred to as scattering resonances.In the conservative self-adjoint case the spectral theorem guarantees the completeness andspectral stability of the associated normal modes. In this sense, a natural question in the non-self-adjoint setting refers to the char…

QNM completenessPseudospectrumBlack holesNanoparticulesMethodes spectralesSpectrum stabilityOperateurs non-selfadjointsSpectral methodsQuasinormal modesPseudospectreNon-Selfadjoint operatorNanoparticlesModes quasi-NormauxComplétude de modes quasi-NormauxTrous noirStabilité spectrale[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
researchProduct

A theoretical approach of the propagation through geometrical constraints in cardiac tissue

2007

International audience; The behaviour of impulse propagation in the presence of non-excitable scars and boundaries is a complex phenomenon and induces pathological consequences in cardiac tissue. In this article, a geometrical con¯guration is considered so that cardiac waves propagate through a thin strand, which is connected to a large mass of cells. At this interface, waves can slow down or even be blocked depending on the width of the strand. We present an analytical approach leading to determine the blockade condition, by introducing planar travelling wavefront and circular stationary wave. Eventually, the in°uence of the tissue geometry is examined on the impulse propagation velocity.

Quantitative Biology::Tissues and Organs[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Physics::Medical PhysicsBlockade phenomenon[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Geometry030204 cardiovascular system & hematologyImpulse (physics)Circular stationary waveStanding waveCardiac tissue.03 medical and health sciences0302 clinical medicinePlanar[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]FitzHugh–Nagumo model[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Engineering (miscellaneous)Cardiac tissue030304 developmental biologyWavefrontPhysicsTravelling wavefront0303 health sciencesApplied Mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mechanics[ SDV.MHEP.CSC ] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemModeling and Simulation[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]
researchProduct

AKNS and NLS hierarchies, MRW solutions, $P_n$ breathers, and beyond

2018

We describe a unified structure of rogue wave and multiple rogue wave solutions for all equations of the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and their mixed and deformed versions. The definition of the AKNS hierarchy and its deformed versions is given in the Sec. II. We also consider the continuous symmetries of the related equations and the related spectral curves. This work continues and summarises some of our previous studies dedicated to the rogue wave-like solutions associated with AKNS, nonlinear Schrodinger, and KP hierarchies. The general scheme is illustrated by the examples of small rank n, n ⩽ 7, rational or quasi-rational solutions. In particular, we consider rank-2 and …

Rank (linear algebra)BreatherStructure (category theory)Statistical and Nonlinear PhysicsWave equation01 natural sciences010305 fluids & plasmasNonlinear systemsymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable Systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesHomogeneous spacesymbolsRogue wave010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsSchrödinger's catMathematicsMathematical physics
researchProduct