Search results for "mathematical analysis"
showing 10 items of 2409 documents
Hollow system with fin. Transient Green function method combination for two hollow cylinders
2017
In this paper we develop mathematical model for three dimensional heat equation for the system with hollow wall and fin and construct its analytical solution for two hollow cylindrical sample. The method of solution is based on Green function method for one hollow cylinder. On the conjugation conditions between both hollow cylinders we construct solution for system wall with fin. As result we come to integral equation on the surface between both hollow cylinders. Solution is obtained in the form of second kind Fredholm integral equation. The generalizing of Green function method allows us to use Green function method for regular non-canonical domains.
Fixed point results on metric-type spaces
2014
Abstract In this paper we obtain fixed point and common fixed point theorems for self-mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an application to integral equations are given to illustrate the usability of the obtained results.
Analysis of discrete and continuous distributions of ventilatory time constants from dynamic computed tomography.
2005
In this study, an algorithm was developed to measure the distribution of pulmonary time constants (TCs) from dynamic computed tomography (CT) data sets during a sudden airway pressure step up. Simulations with synthetic data were performed to test the methodology as well as the influence of experimental noise. Furthermore the algorithm was applied to in vivo data. In five pigs sudden changes in airway pressure were imposed during dynamic CT acquisition in healthy lungs and in a saline lavage ARDS model. The fractional gas content in the imaged slice (FGC) was calculated by density measurements for each CT image. Temporal variations of the FGC were analysed assuming a model with a continuous…
Some Notes About Distribution Frame Multipliers
2020
Inspired by a recent work about distribution frames, the definition of multiplier operator is extended in the rigged Hilbert spaces setting and a study of its main properties is carried on. In particular, conditions for the density of domain and boundedness are given. The case of Riesz distribution bases is examined in order to develop a symbolic calculus.
A symmetric Galerkin BEM for plate bending analysis
2009
Abstract The Symmetric Galerkin Boundary Element Method is employed in thin plate bending analysis in accordance with the Love–Kirchhoff kinematical assumption. The equations are obtained through the stationary conditions of the total potential energy, written for a plate whose boundary is discretized in boundary elements. Since the matrix coefficients are made up as double integrals with high order singularities, a strategy is shown to compute these coefficients in closed form. Furthermore, in order to model the kinematical discontinuities and to weight the mechanical quantities along the boundary elements, the Lagrangian quadratic shape functions, rather than C 1 type (spline, Hermitian),…
Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method
2017
For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.
Spacelike energy of timelike unit vector fields on a Lorentzian manifold
2004
On a Lorentzian manifold, we define a new functional on the space of unit timelike vector fields given by the L2 norm of the restriction of the covariant derivative of the vector field to its orthogonal complement. This spacelike energy is related with the energy of the vector field as a map on the tangent bundle endowed with the Kaluza–Klein metric, but it is more adapted to the situation. We compute the first and second variation of the functional and we exhibit several examples of critical points on cosmological models as generalized Robertson–Walker spaces and Godel universe, on Einstein and contact manifolds and on Lorentzian Berger’s spheres. For these critical points we have also stu…
A historical account on characterizations ofC1-manifolds in Euclidean spaces by tangent cones
2014
Abstract A historical account on characterizations of C 1 -manifolds in Euclidean spaces by tangent cones is provided. Old characterizations of smooth manifold (by tangent cones), due to Valiron (1926, 1927) and Severi (1929, 1934) are recovered; modern characterizations, due to Gluck (1966, 1968) and Tierno (1997) are restated. All these results are consequences of the Four-cones coincidence theorem due to [1] .
Tangent measures and densities
1995
Tangent Measures, Densities, and Singular Integrals
1995
We introduce tangent measures in the sense of David Preiss. We discuss their applications to the density and rectifiability properties of general Borel measures in ℝ n as well as to the behaviour of certain singular integrals with respect to such measures.