Search results for "maximal function"
showing 9 items of 19 documents
Fractional Maximal Functions in Metric Measure Spaces
2013
Abstract We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.
A maximal Function Approach to Two-Measure Poincaré Inequalities
2018
This paper extends the self-improvement result of Keith and Zhong in Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincare inequality for $$10$$ under a balance condition on the measures. The corresponding result for a maximal Poincare inequality is also considered. In this case the left-hand side in the Poincare inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincare inequalities is used to characterize the self-improvement of two-measure Poincare inequalities. Examples are constructed to illustrate the role of t…
Maximal Function Methods for Sobolev Spaces
2021
REGULARITY OF THE FRACTIONAL MAXIMAL FUNCTION
2003
The purpose of this work is to show that the fractional maximal operator has somewhat unexpected regularity properties. The main result shows that the fractional maximal operator maps -spaces boundedly into certain first-order Sobolev spaces. It is also proved that the fractional maximal operator preserves first-order Sobolev spaces. This extends known results for the Hardy–Littlewood maximal operator.
The Variation of the Fractional Maximal Function of a Radial Function
2017
Abstract In this article, we study the regularity of the non-centered fractional maximal operator $M_{\beta}$. As the main result, we prove that there exists $C(n,\beta)$ such that if $q=n/(n-\beta)$ and $f$ is radial function, then $\|DM_{\beta}f\|_{L^{q}({\mathbb{R}^n})}\leq C(n,\beta)\|Df\|_{L^{1}({\mathbb{R}^n})}$. The corresponding result was previously known only if $n=1$ or $\beta=0$. Our proofs are almost free from one-dimensional arguments. Therefore, we believe that the new approach may be very useful when trying to extend the result for all $f\in W^{1,1}({\mathbb{R}^n})$.
Continuity of the maximal operator in Sobolev spaces
2006
We establish the continuity of the Hardy-Littlewood maximal operator on Sobolev spaces W 1,p (R n ), 1 < p < ∞. As an auxiliary tool we prove an explicit formula for the derivative of the maximal function.
Ein Kriterium f�r die Approximierbarkeit von Funktionen aus sobolewschen R�umen durch glatte Funktionen
1981
The present paper provides a necessary and sufficient criterion for an element of a Sobolev space W k p (Ω) to be approximated in the Sobolev norm by Ck(En)-smooth functions. Here Ω is a bounded open set of n-dimensional Euclidean space En with convex closure $$\bar \Omega$$ and boundary ∂Ω having n-dimensional Lebesgue measure zero. No further boundary regularity (such as e.g. the segment property) is required.Our main tools are the Hardy-Littlewood maximal functions and a slightly strengthened version of a well-known extension theorem of Whitney.This work was inspired by and is very close in spirit to the pertinent parts of Calderon-Zygmund [6].
Estimates of maximal functions measuring local smoothness
1999
Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(I n ) (I≡[0,1]. Set $${\mathcal{N}}_\eta f(x) = \sup \frac{1}{{\left| Q \right|\eta (\left| Q \right|^{1/n} )}} \smallint _Q \left| {f(t) - f(x)} \right|dt,$$ , where the supremum is taken over all cubes containing the pointx. Forη=t α (0<α≤1) this definition was given by A.Calderon. In the paper we prove estimates of the maximal functions $${\mathcal{N}}_\eta f$$ , along with some embedding theorems. In particular, we prove the following Sobolev type inequality: if $$1 \leqslant p< q< \infty , \theta \equiv n(1/p - 1/q)< 1, and \eta (t) \leqslant t^\theta \sigma (t),$$ , then $$\parallel {\mathcal{N}}_…
MR2541232 (2010j:60101) Yong, Jiao; Lihua, Peng; Peide, Liu Atomic decompositions of Lorentz martingale spaces and applications. J. Funct. Spaces App…
2010
In this paper atomic decomposition theorems of martingales are considered. In particular, three atomic decomposition theorems for Lorentz martingale spacesHs p,q, Qp,q andDp,q, where 0 < p < 1, and 0 < q 1, are proved. As a consequence of these decompositions, the authors obtain a sufficient condition for a sublinear operator T, defined on the previous Lorentz martingale spaces Hs p,q, Qp,q and Dp,q and taking values in Lorentz spaces Lr, to be bounded. Also, a restricted weak-type interpolation theorem is established.