Search results for "mesoscopic"
showing 10 items of 709 documents
Electron–phonon coupling in degenerate silicon-on-insulator film probed using superconducting Schottky junctions
2002
Abstract Energy flow rate in degenerate n-type silicon-on-insulator (SOI) film is studied at low temperatures. The electrons are heated above the lattice temperature by electric field and the electron temperature is measured via semiconductor–superconductor quasiparticle tunneling. The energy flow rate in the system is found to be proportional to T 5 , indicating that electron–phonon relaxation rate and electron–phonon phase breaking rate are proportional to T 3 . The electron–phonon system in the SOI film is in the “dirty limit” where the electron mean free path is smaller than the inverse of the thermal phonon wave vector.
Resonant Tunneling through a Macroscopic Charge State in a Superconducting Single Electron Transistor
1997
We predict theoretically and observe in experiment that the differential conductance of a superconducting single electron transistor exhibits a peak which is a complete analog, in a macroscopic system, of a standard resonant tunneling peak associated with tunneling through a single quantum state. In particular, in a symmetric transistor, the peak height is universal and equal to ${e}^{2}/2\ensuremath{\pi}\ensuremath{\Elzxh}$. Away from the resonance we clearly observe the cotunneling current which, in contrast to the normal-metal transistor, varies linearly with the bias voltage.
Spatially resolved measurement of nonequilibrium quasiparticle relaxation in superconducting Al
2011
Spatially resolved relaxation of nonequilibrium quasiparticles in a superconductor at ultralow temperatures was experimentally studied. It was found that the quasiparticle injection through a tunnel junction results in the modification of the shape of the I-V characteristic of a remote ``detector'' junction. The effect depends on the temperature, injection current, and proximity to the injector. The phenomena can be understood in terms of the creation of quasiparticle charge and energy disequilibrium characterized by two different length scales ${\ensuremath{\Lambda}}_{{Q}^{*}}~5$ and ${\ensuremath{\Lambda}}_{{T}^{*}}~40$ $\ensuremath{\mu}$m. The findings are in good agreement with existing…
Landau damping in high-temperature superconductors
1995
We investigate the decay of a phonon into single-electron excitations in the cuprate superconductors. In a clean crystal the screening of the longitudinal phonon field cancels singularity of the Landau damping threshold and makes it experimentally unobservable. In a dirty metal the phase volume of the electrons involved in damping is small, which reduces the probability of the phonon decay. However, in this case the observation of dependence between the phonon linewidth and light penetration depth is more favorable than in the clean metal because the damping has no threshold.
Odd triplet superconductivity induced by the moving condensate
2020
It has been commonly accepted that magnetic field suppresses superconductivity by inducing the ordered motion of Cooper pairs. We demonstrate that magnetic field can instead provide a generation of superconducting correlations by inducing the motion of superconducting condensate. This effect arises in superconductor/ferromagnet heterostructures in the presence of Rashba spin-orbital coupling. We predict the odd-frequency spin-triplet superconducting correlations called the Berezinskii order to be switched on at large distances from the superconductor/ferromagnet interface by the application of a magnetic field. This is shown to result in the unusual behaviour of Josephson effect and local d…
Resistive State of Superconductor-Ferromagnet-Superconductor Josephson Junctions in the Presence of Moving Domain Walls
2019
We describe resistive states of the system combining two types of orderings---a superconducting and a ferromagnetic one. It is shown that in the presence of magnetization dynamics such systems become inherently dissipative and in principle cannot sustain any amount of the superconducting current because of the voltage generated by the magnetization dynamics. We calculate generic current-voltage characteristics of a superconductor-ferromagnet-superconductor Josephson junction with an unpinned domain wall and find the low-current resistance associated with the domain wall motion. We suggest the finite slope of Shapiro steps as the characteristic feature of the regime with domain wall oscillat…
Heat Capacity of Mesoscopic Superconducting Disks
1999
We study the heat capacity of isolated giant vortex states, which are good angular momentum ($L$) states, in a mesoscopic superconducting disk using the Ginzburg-Landau (GL) theory. At small magnetic fields the $L$=0 state qualitatively behaves like the bulk sample characterized by a discontinuity in heat capacity at $T_c$. As the field is increased the discontinuity slowly turns into a continuous change which is a finite size effect. The higher $L$ states show a continuous change in heat capacity at $T_c$ at all fields. We also show that for these higher $L$ states, the behavior of the peak position with change in field is related to the paramagnetic Meissner effect (irreversible) and can …
Electronic and Thermal Sequential Transport in Metallic and Superconducting Two-Junction Arrays
2010
The description of transport phenomena in devices consisting of arrays of tunnel junctions, and the experimental confirmation of these predictions is one of the great successes of mesoscopic physics. The aim of this paper is to give a self-consistent review of sequential transport processes in such devices, based on the so-called “orthodox” model. We calculate numerically the current-voltage (I–V) curves, the conductance versus bias voltage (G–V) curves, and the associated thermal transport in symmetric and asymmetric two-junction arrays such as Coulomb-blockade thermometers (CBTs), superconducting-insulator-normal-insulator-superconducting (SINIS) structures, and superconducting single-ele…
Nonlocal pure spin current injection via quantum pumping and crossed Andreev reflection
2005
A pure spin current injector is proposed based on adiabatic pumping and crossed normal/Andreev reflection. The device consists of a three-terminal ferromagnet-superconductor-semiconductor system in which the injection of a pure spin current is into the semiconductor which is coupled to the superconductor within a coherence length away from the ferromagnet enabling the phenomena of crossed normal /Andreev reflection to operate. Quantum pumping is induced by adiabatically modulating two independent parameters of the ferromagnetic lead, namely the magnetization strength and the strength of coupling between the ferromagnet and the superconductor. The competition between the normal/Andreev refle…
Distinguishing Majorana Zero Modes from Impurity States through Time-Resolved Transport
2019
We study time-resolved charge transport in a superconducting nanowire using time-dependent Landauer-B{\"u}ttiker theory. We find that the steady-state Majorana zero-bias conductance peak emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These oscillations are absent for a trivial impurity state that otherwise shows a very similar steady-state signal as the Majorana zero mode. In addition, we find that Andreev bound states or quasi-Majorana states in the topologically trivial bulk phase can give rise to a zero-bias conductance peak, also retaining the transient properties of the Majorana zero mode. Our results imply that (1) time-resolved transport m…