Search results for "mesoscopic"

showing 10 items of 709 documents

Electron–phonon coupling in degenerate silicon-on-insulator film probed using superconducting Schottky junctions

2002

Abstract Energy flow rate in degenerate n-type silicon-on-insulator (SOI) film is studied at low temperatures. The electrons are heated above the lattice temperature by electric field and the electron temperature is measured via semiconductor–superconductor quasiparticle tunneling. The energy flow rate in the system is found to be proportional to T 5 , indicating that electron–phonon relaxation rate and electron–phonon phase breaking rate are proportional to T 3 . The electron–phonon system in the SOI film is in the “dirty limit” where the electron mean free path is smaller than the inverse of the thermal phonon wave vector.

SuperconductivityPhysicsCondensed matter physicsPhononsuperconductivityelectron phonon couplingelectron energy relaxationElectronCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialssilicon-on-insulatorCondensed Matter::Materials ScienceCondensed Matter::SuperconductivityElectric fieldQuasiparticleElectron temperatureCondensed Matter::Strongly Correlated ElectronsWave vectorQuantum tunnellingPhysica E: Low-dimensional Systems and Nanostructures
researchProduct

Resonant Tunneling through a Macroscopic Charge State in a Superconducting Single Electron Transistor

1997

We predict theoretically and observe in experiment that the differential conductance of a superconducting single electron transistor exhibits a peak which is a complete analog, in a macroscopic system, of a standard resonant tunneling peak associated with tunneling through a single quantum state. In particular, in a symmetric transistor, the peak height is universal and equal to ${e}^{2}/2\ensuremath{\pi}\ensuremath{\Elzxh}$. Away from the resonance we clearly observe the cotunneling current which, in contrast to the normal-metal transistor, varies linearly with the bias voltage.

SuperconductivityPhysicsCondensed matter physicsTransistorGeneral Physics and AstronomyCoulomb blockadeBiasingCharge (physics)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectResonance (particle physics)law.inventionlawQuantum stateQuantum tunnellingPhysical Review Letters
researchProduct

Spatially resolved measurement of nonequilibrium quasiparticle relaxation in superconducting Al

2011

Spatially resolved relaxation of nonequilibrium quasiparticles in a superconductor at ultralow temperatures was experimentally studied. It was found that the quasiparticle injection through a tunnel junction results in the modification of the shape of the I-V characteristic of a remote ``detector'' junction. The effect depends on the temperature, injection current, and proximity to the injector. The phenomena can be understood in terms of the creation of quasiparticle charge and energy disequilibrium characterized by two different length scales ${\ensuremath{\Lambda}}_{{Q}^{*}}~5$ and ${\ensuremath{\Lambda}}_{{T}^{*}}~40$ $\ensuremath{\mu}$m. The findings are in good agreement with existing…

SuperconductivityPhysicsCondensed matter physicsta114ta221Charge (physics)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsLambdaElectronic Optical and Magnetic MaterialsTunnel junctionCondensed Matter::SuperconductivityQuasiparticleRelaxation (physics)Microscopic theoryEnergy (signal processing)Physical Review B
researchProduct

Landau damping in high-temperature superconductors

1995

We investigate the decay of a phonon into single-electron excitations in the cuprate superconductors. In a clean crystal the screening of the longitudinal phonon field cancels singularity of the Landau damping threshold and makes it experimentally unobservable. In a dirty metal the phase volume of the electrons involved in damping is small, which reduces the probability of the phonon decay. However, in this case the observation of dependence between the phonon linewidth and light penetration depth is more favorable than in the clean metal because the damping has no threshold.

SuperconductivityPhysicsHigh-temperature superconductivityField (physics)Condensed matter physicsPhononElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlaw.inventionLaser linewidthlawCondensed Matter::SuperconductivityCondensed Matter::Strongly Correlated ElectronsCuprateLandau dampingPhysical Review B
researchProduct

Odd triplet superconductivity induced by the moving condensate

2020

It has been commonly accepted that magnetic field suppresses superconductivity by inducing the ordered motion of Cooper pairs. We demonstrate that magnetic field can instead provide a generation of superconducting correlations by inducing the motion of superconducting condensate. This effect arises in superconductor/ferromagnet heterostructures in the presence of Rashba spin-orbital coupling. We predict the odd-frequency spin-triplet superconducting correlations called the Berezinskii order to be switched on at large distances from the superconductor/ferromagnet interface by the application of a magnetic field. This is shown to result in the unusual behaviour of Josephson effect and local d…

SuperconductivityPhysicsJosephson effectLocal density of statesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesHeterojunction02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesMagnetic fieldSuperconductivity (cond-mat.supr-con)Coupling (physics)FerromagnetismCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesCooper pair010306 general physics0210 nano-technology
researchProduct

Resistive State of Superconductor-Ferromagnet-Superconductor Josephson Junctions in the Presence of Moving Domain Walls

2019

We describe resistive states of the system combining two types of orderings---a superconducting and a ferromagnetic one. It is shown that in the presence of magnetization dynamics such systems become inherently dissipative and in principle cannot sustain any amount of the superconducting current because of the voltage generated by the magnetization dynamics. We calculate generic current-voltage characteristics of a superconductor-ferromagnet-superconductor Josephson junction with an unpinned domain wall and find the low-current resistance associated with the domain wall motion. We suggest the finite slope of Shapiro steps as the characteristic feature of the regime with domain wall oscillat…

SuperconductivityPhysicsJosephson effectMagnetization dynamicsResistive touchscreenCondensed matter physicsGeneral Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesDomain wall (magnetism)FerromagnetismCondensed Matter::Superconductivity0103 physical sciencesDomain (ring theory)Dissipative system010306 general physicsPhysical Review Letters
researchProduct

Heat Capacity of Mesoscopic Superconducting Disks

1999

We study the heat capacity of isolated giant vortex states, which are good angular momentum ($L$) states, in a mesoscopic superconducting disk using the Ginzburg-Landau (GL) theory. At small magnetic fields the $L$=0 state qualitatively behaves like the bulk sample characterized by a discontinuity in heat capacity at $T_c$. As the field is increased the discontinuity slowly turns into a continuous change which is a finite size effect. The higher $L$ states show a continuous change in heat capacity at $T_c$ at all fields. We also show that for these higher $L$ states, the behavior of the peak position with change in field is related to the paramagnetic Meissner effect (irreversible) and can …

SuperconductivityPhysicsMesoscopic physicsAngular momentumCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesGeneral Physics and AstronomyHeat capacityMagnetic fieldMagnetizationParamagnetismMeissner effectCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)
researchProduct

Electronic and Thermal Sequential Transport in Metallic and Superconducting Two-Junction Arrays

2010

The description of transport phenomena in devices consisting of arrays of tunnel junctions, and the experimental confirmation of these predictions is one of the great successes of mesoscopic physics. The aim of this paper is to give a self-consistent review of sequential transport processes in such devices, based on the so-called “orthodox” model. We calculate numerically the current-voltage (I–V) curves, the conductance versus bias voltage (G–V) curves, and the associated thermal transport in symmetric and asymmetric two-junction arrays such as Coulomb-blockade thermometers (CBTs), superconducting-insulator-normal-insulator-superconducting (SINIS) structures, and superconducting single-ele…

SuperconductivityPhysicsMesoscopic physicsCondensed matter physicsTransistorConductanceBiasing02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural scienceslaw.inventionlawCondensed Matter::Superconductivity0103 physical sciencesThermal010306 general physics0210 nano-technologyTransport phenomenaEnergy (signal processing)
researchProduct

Nonlocal pure spin current injection via quantum pumping and crossed Andreev reflection

2005

A pure spin current injector is proposed based on adiabatic pumping and crossed normal/Andreev reflection. The device consists of a three-terminal ferromagnet-superconductor-semiconductor system in which the injection of a pure spin current is into the semiconductor which is coupled to the superconductor within a coherence length away from the ferromagnet enabling the phenomena of crossed normal /Andreev reflection to operate. Quantum pumping is induced by adiabatically modulating two independent parameters of the ferromagnetic lead, namely the magnetization strength and the strength of coupling between the ferromagnet and the superconductor. The competition between the normal/Andreev refle…

SuperconductivityPhysicsQuantum PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryFOS: Physical sciencesCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsAndreev reflectionCoherence lengthMagnetizationCondensed Matter::Materials ScienceSemiconductorFerromagnetismCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)businessAdiabatic processQuantum
researchProduct

Distinguishing Majorana Zero Modes from Impurity States through Time-Resolved Transport

2019

We study time-resolved charge transport in a superconducting nanowire using time-dependent Landauer-B{\"u}ttiker theory. We find that the steady-state Majorana zero-bias conductance peak emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These oscillations are absent for a trivial impurity state that otherwise shows a very similar steady-state signal as the Majorana zero mode. In addition, we find that Andreev bound states or quasi-Majorana states in the topologically trivial bulk phase can give rise to a zero-bias conductance peak, also retaining the transient properties of the Majorana zero mode. Our results imply that (1) time-resolved transport m…

SuperconductivityPhysicsSettore FIS/03Zero modeCondensed Matter - Mesoscale and Nanoscale PhysicssuprajohtavuusCondensed matter physicsPhase (waves)General Physics and AstronomyConductanceFOS: Physical sciencesCharge (physics)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesTopological quantum computerPhysics::History of Physics010305 fluids & plasmasMAJORANAnanorakenteet0103 physical sciencesBound stateMesoscale and Nanoscale Physics (cond-mat.mes-hall)kvanttifysiikka010306 general physics
researchProduct