Search results for "metriset avaruudet"

showing 10 items of 36 documents

Rectifiability of RCD(K,N) spaces via δ-splitting maps

2021

In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via -splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda. peerReviewed

Pure mathematicsTangent coneOrder (ring theory)Differential calculusRCD spaceArticlesMathematical proofmetriset avaruudetMeasure (mathematics)matemaattinen analyysidifferentiaaligeometriaConvergence (routing)Metric (mathematics)Mathematics::Metric GeometryRectifiabilityEssential dimensionMathematicstangent cone
researchProduct

Removable sets for intrinsic metric and for holomorphic functions

2019

We study the subsets of metric spaces that are negligible for the infimal length of connecting curves; such sets are called metrically removable. In particular, we show that every totally disconnected set with finite Hausdorff measure of codimension 1 is metrically removable, which answers a question raised by Hakobyan and Herron. The metrically removable sets are shown to be related to other classes of "thin" sets that appeared in the literature. They are also related to the removability problems for classes of holomorphic functions with restrictions on the derivative.

Pure mathematicsintrinsic metricsGeneral MathematicsHolomorphic function01 natural sciencesIntrinsic metricSet (abstract data type)Mathematics - Metric GeometryTotally disconnected spaceholomorphic functionsFOS: MathematicsHausdorff measure0101 mathematicsComplex Variables (math.CV)MathematicsPartial differential equationmatematiikkaMathematics - Complex Variables010102 general mathematicsMetric Geometry (math.MG)Codimensionmetriset avaruudet010101 applied mathematicsMetric space28A78 (Primary) 26A16 30C62 30H05 49Q15 51F99 (Secondary)Analysis
researchProduct

Quasispheres and metric doubling measures

2018

Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere $X$ is a quasisphere if and only if $X$ is linearly locally connected and carries a weak metric doubling measure, i.e., a measure that deforms the metric on $X$ without much shrinking.

Pure mathematicsmetric spaces30L10 (Primary) 30C65 28A75 (Secondary)General MathematicsMathematicsofComputing_GENERALCharacterization (mathematics)01 natural sciencesMeasure (mathematics)Intrinsic metricfunktioteoria0103 physical sciencesFOS: MathematicsComplex Variables (math.CV)0101 mathematicsMathematicsDiscrete mathematicsMathematics - Complex VariablesApplied MathematicsInjective metric spaceta111010102 general mathematicsmetriset avaruudetcomplex analysisConvex metric spacemeasure theoryMetric (mathematics)mittateoria010307 mathematical physicsFisher information metricProceedings of the American Mathematical Society
researchProduct

Smooth surjections and surjective restrictions

2017

Given a surjective mapping $f : E \to F$ between Banach spaces, we investigate the existence of a subspace $G$ of $E$, with the same density character as $F$, such that the restriction of $f$ to $G$ remains surjective. We obtain a positive answer whenever $f$ is continuous and uniformly open. In the smooth case, we deduce a positive answer when $f$ is a $C^1$-smooth surjection whose set of critical values is countable. Finally we show that, when $f$ takes values in the Euclidean space $\mathbb R^n$, in order to obtain this result it is not sufficient to assume that the set of critical values of $f$ has zero-measure.

TopologíaPure mathematicsmetric spaces46B80 46T20General Mathematicssmooth surjective mappingBanach spacesurjective restrictionnonlinear quotient01 natural sciencesfunctional analysisSurjective functionuniformly open mapMathematics - Metric GeometryFOS: MathematicsMathematics (all)Order (group theory)Countable set0101 mathematicsAnálisis funcional y teoría de operadoresDensity character; Nonlinear quotient; Smooth surjective mapping; Surjective restriction; Uniformly open map; Mathematics (all)MathematicsEuclidean spaceta111010102 general mathematicsMetric Geometry (math.MG)16. Peace & justicemetriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsCharacter (mathematics)density characterfunktionaalianalyysiBijection injection and surjectionSubspace topology
researchProduct

Baum-Katz’s Type Theorems for Pairwise Independent Random Elements in Certain Metric Spaces

2020

In this study, some Baum-Katz’s type theorems for pairwise independent random elements are extended to a metric space endowed with a convex combination operation. Our results are considered in the cases of identically distributed and non-identically distributed random elements. Some illustrative examples are provided to sharpen the results. peerReviewed

convex combinationmetric spaceBaum-Katz theoremmetriset avaruudet
researchProduct

Differential structure associated to axiomatic Sobolev spaces

2020

The aim of this note is to explain in which sense an axiomatic Sobolev space over a general metric measure space (à la Gol’dshtein–Troyanov) induces – under suitable locality assumptions – a first-order differential structure. peerReviewed

cotangent moduleLocality of differentialsPure mathematicsGeneral MathematicsAxiomatic Sobolev spaceDifferential structureSpace (mathematics)01 natural sciencesMeasure (mathematics)Settore MAT/05 - Analisi MatematicaFOS: Mathematicsaxiomatic Sobolev space0101 mathematics46E35 51FxxdifferentiaalilaskentaCotangent moduleAxiomMathematicsAxiomatic Sobolev space; Cotangent module; Locality of differentials010102 general mathematicsLocalitymetriset avaruudetFunctional Analysis (math.FA)locality of differentialsSobolev spaceMathematics - Functional AnalysisMetric (mathematics)
researchProduct

Metric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal

2022

Two definitions for the rectifiability of hypersurfaces in Heisenberg groups Hn have been proposed: one based on H-regular surfaces and the other on Lipschitz images of subsets of codimension-1 vertical subgroups. The equivalence between these notions remains an open problem. Recent partial results are due to Cole–Pauls, Bigolin–Vittone, and Antonelli–Le Donne. This paper makes progress in one direction: the metric Lipschitz rectifiability of H-regular surfaces. We prove that H-regular surfaces in Hn with α-Hölder continuous horizontal normal, α>0⁠, are metric bilipschitz rectifiable. This improves on the work by Antonelli–Le Donne, where the same conclusion was obtained for C∞-surfaces. In…

differentiaaligeometriamittateoriametriset avaruudet
researchProduct

Nilpotent Groups and Bi-Lipschitz Embeddings Into L1

2022

We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is abelian. Our proof follows the work of Cheeger and Kleiner, by considering the pull-back distance of a Lipschitz map into L1 and representing it using a cut measure. We show that such cut measures, and the induced distances, can be blown up and the blown-up cut measure is supported on “generic” tangents of the original sets. By repeating such a blow-up procedure, one obtains a cut measure supported on half-spaces. This differentiation result then is used to prove that bi-Lipsch…

differentiaaligeometriaryhmäteoriaLien ryhmätfunktionaalianalyysimetriset avaruudet
researchProduct

Quasiconformal geometry and removable sets for conformal mappings

2020

We study metric spaces defined via a conformal weight, or more generally a measurable Finsler structure, on a domain $\Omega \subset \mathbb{R}^2$ that vanishes on a compact set $E \subset \Omega$ and satisfies mild assumptions. Our main question is to determine when such a space is quasiconformally equivalent to a planar domain. We give a characterization in terms of the notion of planar sets that are removable for conformal mappings. We also study the question of when a quasiconformal mapping can be factored as a 1-quasiconformal mapping precomposed with a bi-Lipschitz map.

funktioteoriaMathematics - Metric GeometryGeneral MathematicsFOS: MathematicsMetric Geometry (math.MG)geometriametriset avaruudetPrimary 30L10. Secondary 30C35 52A38 53B40Analysis
researchProduct

Two‐dimensional metric spheres from gluing hemispheres

2022

We study metric spheres (Z,dZ) obtained by gluing two hemispheres of S2 along an orientation-preserving homeomorphism g:S1→S1, where dZ is the canonical distance that is locally isometric to S2 off the seam. We show that if (Z,dZ) is quasiconformally equivalent to S2, in the geometric sense, then g is a welding homeomorphism with conformally removable welding curves. We also show that g is bi-Lipschitz if and only if (Z,dZ) has a 1-quasiconformal parametrization whose Jacobian is comparable to the Jacobian of a quasiconformal mapping h:S2→S2. Furthermore, we show that if g−1 is absolutely continuous and g admits a homeomorphic extension with exponentially integrable distortion, then (Z,dZ) …

funktioteoriaMathematics::Dynamical SystemsMathematics::Complex VariablesGeneral MathematicsgeometriamittateoriaMathematics::Geometric Topologymetriset avaruudetJournal of the London Mathematical Society
researchProduct