Search results for "microRNA."

showing 10 items of 574 documents

0393: Impact of miR-378* and its target desmin intermediate filament on mitochondria distribution in cardiomyocytes

2014

Background MiR-378 and miR-378* microRNAs are derived from an intron of the PGC-1β gene, a regulator of mitochondrial biogenesis. Their expression is either repressed or increased during heart failure depending on the model. Through proteomics approaches, we previously identified new targets of these miRs in H9c2 fetal cardiomyoblasts, among which lactate dehydrogenase for miR-378 and key cytoskeletal proteins for miR-378*. Aims To better assess its role in energy metabolism and differentiation; we overexpressed miR-378 and miR-378* in primary neonate rat cardiomyocytes (NRC) that are more differentiated and less proliferative than H9c2 cardiomyoblasts. Results We identified desmin as a new…

business.industryCellMitochondrionBioinformaticsProteomicsCell biologymedicine.anatomical_structureMitochondrial biogenesismicroRNAMedicineDesminCardiology and Cardiovascular MedicinebusinessCytoskeletonIntermediate filamentArchives of Cardiovascular Diseases Supplements
researchProduct

TYPE II DIABETES MELLITUS HAS NO MAJOR INFLUENCE ON PLATELET MICRO–RNA EXPRESSION: RESULTS FROM MICRO–ARRAY PROFILING IN A COHORT OF 60 PATIENTS

2013

Blood platelets represent pro–inflammatory mediators in the development of atherosclerosis. Diabetes mellitus as a major contributor to cardiovascular disease burden induces dysfunctional platelets. Platelets contain abundant miRNAs, which recently have been linked tightly to inflammation. While

business.industryInflammationMicro arraymedicine.diseaseType ii diabetesDiabetes mellitusCohortmicroRNAImmunologymedicinePlateletmedicine.symptomCardiology and Cardiovascular MedicinebusinessJournal of the American College of Cardiology
researchProduct

Molecular diagnostics in gastric cancer.

2014

Despite recent advances in individualised targeted therapy, gastric cancer remains one of the most challenging diseases in gastrointestinal oncology. Modern imaging techniques using endoscopic filter devices and in vivo molecular imaging are designed to enable early detection of the cancer and surveillance of patients at risk. Molecular characterisation of the tumour itself as well as of the surrounding inflammatory environment is more sophisticated in the view of tailored therapies and individual prognostic assessment. The broad application of high throughput techniques for the description of genome wide patterns of structural (copy number aberrations, single nucleotide polymorphisms, meth…

business.industrymedicine.medical_treatmentCancerDiseaseComputational biologyProteomicsMolecular diagnosticsmedicine.diseaseTargeted therapyGene expression profilingMolecular Diagnostic TechniquesStomach NeoplasmsmicroRNAMedicineHumansMolecular imagingbusinessFrontiers in bioscience (Landmark edition)
researchProduct

Pleiotropic antitumor effects of the pan-HDAC inhibitor ITF2357 against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas,

2014

Histone deacetylases (HDAC) extensively contribute to the c-Myc oncogenic program, pointing to their inhibition as an effective strategy against c-Myc-overexpressing cancers. We, thus, studied the therapeutic activity of the new-generation pan-HDAC inhibitor ITF2357 (Givinostat®) against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas (B-NHLs). ITF2357 anti-proliferative and pro-apoptotic effects were analyzed in B-NHL cell lines with c-Myc translocations (Namalwa, Raji and DOHH-2), stabilizing mutations (Raji) or post-transcriptional alterations (SU-DHL-4) in relationship to c-Myc modulation. ITF2357 significantly delayed the in vitro growth of all B-NHL cell lines by inducing G1 c…

c-MycmicroRNAnon-Hodgkin lymphomac-Myc; histone deacetylase inhibitors; microRNA; non-Hodgkin lymphomahistone deacetylase inhibitor
researchProduct

A perspective analysis: microRNAs, glucose metabolism, and drug resistance in colon cancer stem cells

2021

Metabolism sustains the stemness of Cancer Stem Cells (CSCs), affecting, in turn, tumor heterogeneity, metastatic potential, and therapy resistance. Therefore, it is appealing to target CSCs metabolism as a new therapeutic approach. Consequently, we paid considerable attention to the anti-apoptotic microRNA miR-483-3p, that we reported being regulated by glucose metabolism in liver cancer cells. We investigated the therapeutic potential of targeting miR-483-3p by using the anti-glucose metabolism 2-deoxyglucose (2-DG) molecule in tumor Xenograft mouse model originating from two different Colon-Cancer Stem Cell lines (CCSC lines). We show that 2-DG treatment does not affect CCSCs during tumo…

cancer stem cellCancer ResearchColorectal cancerDrug resistanceCarbohydrate metabolismText miningCell Line TumormicroRNAHumansMedicineMolecular Biologybusiness.industryPerspective (graphical)medicine.disease2-DGGene Expression Regulation NeoplasticMicroRNAsGlucosecolon cancerDrug Resistance NeoplasmColonic NeoplasmsNeoplastic Stem CellsCancer researchMolecular MedicineSettore MED/46 - Scienze Tecniche Di Medicina Di LaboratorioStem cellbusinessmetabolismCancer Gene Therapy
researchProduct

MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b

2016

// Giuseppina Roscigno 1, 2 , Cristina Quintavalle 1, 2 , Elvira Donnarumma 3 , Ilaria Puoti 1 , Angel Diaz-Lagares 4 , Margherita Iaboni 1 , Danilo Fiore 1 , Valentina Russo 1 , Matilde Todaro 5 , Giulia Romano 6 , Renato Thomas 7 , Giuseppina Cortino 7 , Miriam Gaggianesi 5 , Manel Esteller 4 , Carlo M. Croce 6 , Gerolama Condorelli 1, 2 1 Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy 2 IEOS-CNR, Naples, Italy 3 IRCCS-SDN, Naples, Italy 4 Epigenetic and Cancer Biology Program (PEBC) IDIBELL, Hospital Duran I Reynals, Barcelona, Spain 5 Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Lab…

cancer stem cells0301 basic medicineMicro RNAsCellular differentiationADNDNMTStem cellsStem cell markermedicine.disease_causeBioinformaticsMCF-7 Cell0302 clinical medicineBreast cancerHEK293 CellTumor Cells CulturedDNA (Cytosine-5-)-MethyltransferasesOligonucleotide Array Sequence AnalysisMicroscopy ConfocalReverse Transcriptase Polymerase Chain ReactionMicroRNAHomeodomain ProteinNanog Homeobox ProteinmicroRNAsGene Expression Regulation NeoplasticOncology030220 oncology & carcinogenesisMCF-7 CellsNeoplastic Stem CellsRNA InterferenceCèl·lules mareBreast NeoplasmResearch PaperHumanHomeobox protein NANOGBlotting WesternBreast NeoplasmsBiologyCàncer de mama03 medical and health sciencesmicroRNAs breast cancer cancer stem cells DNMTBreast cancerCancer stem cellCell Line TumorSpheroids CellularmedicineHumansHomeodomain ProteinsOligonucleotide Array Sequence AnalysiCancer stem cellGene Expression ProfilingCancerDNAmedicine.diseaseMolecular medicineMicroRNAsHEK293 Cells030104 developmental biologyDNA (Cytosine-5-)-MethyltransferaseCancer researchNeoplastic Stem CellCarcinogenesisOctamer Transcription Factor-3
researchProduct

Metabolic Escape Routes of Cancer Stem Cells and Therapeutic Opportunities

2020

Although improvement in early diagnosis and treatment ameliorated life expectancy of cancer patients, metastatic disease still lacks effective therapeutic approaches. Resistance to anticancer therapies stems from the refractoriness of a subpopulation of cancer cells—termed cancer stem cells (CSCs)—which is endowed with tumor initiation and metastasis formation potential. CSCs are heterogeneous and diverge by phenotypic, functional and metabolic perspectives. Intrinsic as well as extrinsic stimuli dictated by the tumor microenvironment (TME)have critical roles in determining cell metabolic reprogramming from glycolytic toward an oxidative phenotype and vice versa, allowing cancer cells to th…

cancer stem cells0301 basic medicinecancer stem cellCancer ResearchStromal cellSettore MED/50 - Scienze Tecniche Mediche ApplicateCellcancer metabolismReviewTumor initiationlcsh:RC254-282glycolysi03 medical and health sciences0302 clinical medicineCancer stem celllipid metabolismmicroRNAtumor microenvironmentmetabolic reprogrammingMedicinemetabolism-based anticancer drugsTumor microenvironmentbusiness.industryglycolysislcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensOXPHOSMicrovesicles030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCancer cellCancer researchSettore MED/46 - Scienze Tecniche Di Medicina Di LaboratoriobusinessCancers
researchProduct

MicroRNA-29b-1 impairs in vitro cell proliferation, self‑renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells

2014

Osteosarcoma (OS) is the most common type of bone cancer, with a peak incidence in the early childhood. Emerging evidence suggests that treatments targeting cancer stem cells (CSCs) within a tumor can halt cancer and improve patient survival. MicroRNAs (miRNAs) have been implicated in the maintenance of the CSC phenotype, thus, identification of CSC-related miRNAs would provide information for a better understanding of CSCs. Downregulation of miRNA-29 family members (miR-29a/b/c; miR‑29s) was observed in human OS, however, little is known about the functions of miR-29s in human OS CSCs. Previously, during the characterization of 3AB-OS cells, a CSC line selected from human OS MG63 cells, we…

cancer stem cellsHomeobox protein NANOGCancer Research3AB-OS cells; Cancer stem cells; MicroRNA; MicroRNA-29b-1; Multidrug resistance; Osteosarcoma; Bone Neoplasms; Cell Line Tumor; Cell Movement; Cell Proliferation; Drug Resistance Neoplasm; Gene Expression Regulation Neoplastic; Humans; MicroRNAs; Neoplasm Invasiveness; Osteosarcoma; Cancer Research; OncologyDrug ResistanceBone NeoplasmsBiologyCell LineSOX2multidrug resistanceCell MovementCancer stem cellCell Line TumorSettore BIO/10 - BiochimicamicroRNAmedicineHumansNeoplasm InvasivenessClonogenic assaymicroRNA-29b-1Cell ProliferationNeoplasticOsteosarcomaTumormicroRNAOncogeneCancer3AB-OS cellsArticlesCell cyclemedicine.diseaseGene Expression Regulation Neoplasticosteosarcoma cancer stem cells microRNA microRNA-29b-1 multidrug resistance 3AB-OS cellsMicroRNAsGene Expression RegulationOncologyDrug Resistance NeoplasmImmunologyCancer researchNeoplasm
researchProduct

Genetic and Molecular Characterization of The Human Osteosarcoma 3AB-OS Cancer Stem Cell Line: A Possible Model For Studying Osteosarcoma Origin and …

2013

Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second-line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB-OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB-OS cells have hypertriploid karyotype wit…

cancer stem cellsPhysiologyClinical Biochemistrymedicine.disease_causePolymerase Chain ReactionOsteosarcoma cancer stem cellSettore BIO/10 - BiochimicaChromosomes HumanGene Regulatory NetworksCopy-number variationOligonucleotide Array Sequence AnalysisGeneticsComparative Genomic HybridizationOsteosarcomabiologychromosomal aberrationGene Expression Regulation NeoplasticPhenotypemiRNAsNeoplastic Stem CellsOsteosarcomaMitosisBone NeoplasmsHMGA2Cancer stem cellCell Line TumormicroRNABiomarkers Tumorgene expression profilingmedicineHumansOsteosarcoma cancer stem cells; karyotype; chromosomal aberrations; gene expression profiling; miRNAsCell LineageGenetic Predisposition to DiseaseRNA MessengerCell NucleusChromosome AberrationsPloidiesModels GeneticComputational BiologyCancerCell Biologymedicine.diseasekaryotypeMicroRNAsKaryotypingbiology.proteinCancer researchCarcinogenesisComparative genomic hybridization
researchProduct

Expresión de microRNAs en la zonas de transición epitelio mesenquimal en el carcinoma colorectal como factor inmunomodulador y pronóstico. Estudio cl…

2018

El subgrupo mesenquimal (CMS4) de la clasificación molecular de consenso de cáncer colorectal es el tipo más agresivo y de peor pronóstico, y se caracteriza por la sobre expresión de genes implicados en el mecanismo de transición epitelio mesenquimal (TEM). La desdiferenciación tumoral focal (DTF) es el reflejo histológico del proceso de TEM. En base a estos conocimientos nos planteamos explorar la influencia de la DTF en la expresión de genes y microRNAs implicados en el proceso de TEM y evaluar su utilidad como factores predictivos de supervivencia. Analizamos de forma retrospectiva el grado de DTF en una serie de 125 especímenes de colectomía en todos los estadios clínicos. Evaluamos la …

carcinoma colorectaltransición epitelio mesenquimalUNESCO::CIENCIAS MÉDICAS:CIENCIAS MÉDICAS [UNESCO]micrornas
researchProduct