Search results for "microbiologie"

showing 10 items of 42 documents

Nitric oxide: a multitask player in plant–microorganism symbioses

2016

Symbiosis is a close and often long-term interaction between two different biological organisms, i.e. plants or fungi and microorganisms. Two main types of plant–microorganism interactions, mutualistic and cooperative, have been categorized. Mutualistic interactions, including nitrogen-fixing and mycorrhizal symbioses, refer to mostly obligate relationships between a host plant and a symbiont microorganism. Cooperative interactions correspond to less obligate and specific relationships. They involve microorganisms, referred to as plant growth-promoting rhizobia (PGPR), able to colonize root surface or inner tissues. Lichens are symbiotic associations of host fungi and photosynthetic partner…

0106 biological sciences0301 basic medicineMicroorganism[SDV]Life Sciences [q-bio]LichenBiology01 natural sciencesRhizobia03 medical and health sciencesinteraction microorganisme végétalSymbiosisNitrogen fixationnitric oxideBotanyPlant symbiosisMycorrhizamicrobiologieLichenoxyde nitriqueObligateEcologyHost (biology)fungifood and beveragesbiology.organism_classificationsymbiosisLegume030104 developmental biologyNitrogen fixationPlant growth-promoting rhizobia (PGPR)MycorrhizasymbioseLegume Lichen Mycorrhiza Nitric oxide Nitrogen fixation Plant growth-promoting rhizobia (PGPR) Plant symbiosis Rhizobium010606 plant biology & botanyRhizobium
researchProduct

Development of a low-alcoholic fermented beverage employing cashew apple juice and non-conventional yeasts

2019

Cashew apples are by-products in the production of cashew nuts, which are mostly left to rot in the fields. Cashew apple juice (CAJ), a highly nutritious beverage, can be produced from them. It is rich in sugars and ascorbic acid, but its high polyphenol content makes it bitter and astringent, and therefore difficult to commercialize. The kingdom of fungi contains more than 2000 yeast species, of which only a few species have been studied in relation to their potential to produce aroma compounds. The aim of this research was to develop a new low-alcoholic fermented beverage to valorize cashew apples. For this purpose, a screening was carried out employing non-conventional yeast species and …

0106 biological sciencesAstringentSaccharomyces cerevisiaeNon‐conventional yeastsPlant ScienceCashew apple juiceSaccharomyces cerevisiae<i>Hanseniaspora guilliermondii</i>01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)Levensmiddelenmicrobiologie<i>Saccharomyces cerevisiae</i>Torulaspora microellipsoides0404 agricultural biotechnology010608 biotechnology<i>Torulaspora microellipsoides</i>Food scienceAroma profileAromaVLAGlcsh:TP500-660non-conventional yeastsbiologyChemistryfood and beverages04 agricultural and veterinary sciencesbiology.organism_classificationAscorbic acidlcsh:Fermentation industries. Beverages. Alcohol040401 food scienceYeastFood Quality and DesignPolyphenolFood MicrobiologyAlcoholic beveragesHanseniaspora guilliermondiiFermentationHanseniaspora guilliermondiiFood Science
researchProduct

Host and environmental factors affecting the intestinal microbiota in chickens

2018

The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial drug trials, to determine corresponding effects on the composition of intestinal microbiota. However, considerable variation of intestinal microbiota composition has been observed both within and across studies. Such variation may in part be attributed to technical factors, such as sampling procedures, sample storage, DNA extraction, the choice of PCR primers and corresponding region to be sequenc…

0301 basic medicineMicrobiology (medical)030106 microbiologyBiosecurityConfounding factorslcsh:QR1-502ZoologymicrobiomeReviewGut microbiotaGut floraMicrobiologylcsh:MicrobiologyPoultry03 medical and health sciencesData sequencesMicrobiologieColonizationMicrobiomeconfounding factors16S rRNAVLAGbiologyAnimal healthgut microbiotaHost (biology)poultrybiology.organism_classificationgut healthAntimicrobial drug030104 developmental biologyGut healthMicrobiome
researchProduct

Negative Impact of Citral on Susceptibility of Pseudomonas aeruginosa to Antibiotics

2021

Essential oils (EOs) or their components are widely used by inhalation or nebulization to fight mild respiratory bacterial infections. However, their interaction with antibiotics is poorly known. In this study we evaluated the effects of citral, the main component of lemongrass oil, on in vitro susceptibility of Pseudomonas aeruginosa to antibiotics. Exposure of strain PA14 to subinhibitory concentrations of citral increased expression of operons encoding the multidrug efflux systems MexEF-OprN and MexXY/OprM, and bacterial resistance to anti-pseudomonal antibiotics including imipenem (twofold), gentamicin (eightfold), tobramycin (eightfold), ciprofloxacin (twofold), and colistin (≥128-fold…

0301 basic medicineMicrobiology (medical)antibiotic resistancemedicine.drug_class[SDV]Life Sciences [q-bio]030106 microbiologyAntibioticsmedicine.disease_causeCitralMicrobiologyMicrobiology03 medical and health scienceschemistry.chemical_compoundtobramycin-citral Schiff baseTobramycinmedicine[CHIM]Chemical Sciencesessential oilscitralOriginal ResearchPseudomonas aeruginosaChemistryAminoglycosidecolistin-citral Schiff baseSciences du Vivant [q-bio]/Microbiologie et Parasitologie[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyeffluxQR1-5023. Good health030104 developmental biology[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyPseudomonas aeruginosaColistin[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyGentamicinEfflux[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriologymedicine.drugFrontiers in Microbiology
researchProduct

Cellular Injuries in Cronobacter sakazakii CIP 103183T and Salmonella enterica Exposed to Drying and Subsequent Heat Treatment in Milk Powder

2018

International audience; Because of the ability of foodborne pathogens to survive in low-moisture foods, their decontamination is an important issue in food protection. This study aimed to clarify some of the cellular mechanisms involved in inactivation of foodborne pathogens after drying and subsequent heating. Individual strains of Salmonella Typhimurium, Salmonella Senftenberg, and Cronobacter sakazakii were mixed into whole milk powder and dried to different water activity levels (0.25 and 0.58); the number of surviving cells was determined after drying and subsequent thermal treatments in closed vessels at 90 and 100 degrees C, for 30 and 120 s. For each condition, the percentage of unc…

0301 basic medicineSalmonellalcsh:QR1-502medicine.disease_causelcsh:Microbiologyperméabilité membranairechemistry.chemical_compound[SDV.IDA]Life Sciences [q-bio]/Food engineeringFood sciencedryingOriginal Researchpropidium iodidebiologyChemistryMicrobiology and Parasitologyplasma-membraneSalmonella entericainfant formulaMicrobiologie et ParasitologieSalmonella entericaAlimentation et Nutritionsaccharomyces-cerevisiaeenterobacter-sakazakiitraitement thermiqueséchageMicrobiology (medical)Water activityMembrane permeabilitydesiccation tolerance030106 microbiologylow-water activityMicrobiologyrespiratory activity03 medical and health sciencesCronobacter sakazakiimedicineFood and NutritionPropidium iodideactivation respiratoireEscherichia colifoodborne pathogensheat treatmentbiology.organism_classificationCronobacter sakazakii030104 developmental biologymembrane permeabilitythermal inactivationSalmonella enterica;Cronobacter sakazakii;membrane permeability;respiratory activity;heat treatment;dryingescherichia-coliBacteria
researchProduct

Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an -L-Rhamnosidase of enological in…

2003

Monoterpenes such as geraniol, linalool, and -terpineol present in grapes determine the varietal flavor properties of young quality wines made from Muscat varieties (for reviews, see references 19 and 21). Geraniol and linalool are considered to be the most important of the monoterpene alcohols, as they are present in greater concentrations and have lower flavor thresholds than other major wine monoterpenes. In particular, linalool is thought to be responsible for the grapelike aroma of wines produced from the Muscat variety. A large proportion of

AFSG Stafafdelingen (WUATV)Glycoside HydrolasespurificationAcyclic MonoterpenesMonoterpenepurifying glycosidasesWineSaccharomyces cerevisiaeMicrobiologyApplied Microbiology and Biotechnologychemistry.chemical_compoundLinalooll-rhamnopyranosidaseMicrobiologieVitisFood scienceFlavorVLAGAlpha-L-rhamnosidasel-arabinofuranosidaseWineEcologybiologybeta-GlucosidaseAspergillus aculeatusbeta-d-glucopyranosidasefood and beveragesbiology.organism_classificationAFSG Staff Departments (WUATV)Yeast in winemakingAspergillusBiochemistrychemistryaromaFermentationMonoterpenesFood Microbiologymicrovinification processessaccharomyces-cerevisiaeGenetic EngineeringnigerGeraniolFood ScienceBiotechnologygrape juice
researchProduct

Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

2011

 Cet article a fait l'objet d'une discussion dans "Morris, C. E., Sands, D. C., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., Ariya, P. A., and Psenner, R.: Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology, Biogeosciences Discuss., 5, 191-212, doi:10.5194/bgd-5-191-2008, 2008."; International audience; For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with prop…

AIRBORNE DISSEMINATION010504 meteorology & atmospheric sciencesMeteorologyAEROBIOLOGY;BIOLOGICAL AEROSOLS;BIO-METEOROLOGY;TRANSPORT;AIRBORNE DISSEMINATION;BIOLOGICAL PROPERTIES;ATMOSPHERIC PROCESSES;BIOSPHERE;CLIMATE CHANGEEarth scienceBiomeCLIMATE CHANGEBiological particleslcsh:Lifemodélisation spatialeBIOSPHERE010501 environmental sciencesBiologyAtmosphere (architecture and spatial design)01 natural sciencesBIO-METEOROLOGYATMOSPHERIC PROCESSESBIOLOGICAL AEROSOLSlcsh:QH540-549.5AEROBIOLOGYddc:550microbiologieEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface Processeschangement climatiquemicroorganismeBIOLOGICAL PROPERTIESclimatlcsh:QE1-996.5microorganisme aerienRadiative forcingTRANSPORT[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]lcsh:GeologyEarth sciencesatmosphèrelcsh:QH501-53113. Climate actionAtmospheric chemistrylcsh:EcologyMetabolic activityBiogeosciences
researchProduct

The Agr communication system provides a benefit to the populations of Listeria monocytogenes in soil

2014

International audience; In this study, we investigated whether the Agr communication system of the pathogenic bacterium Listeria monocytogenes was involved in adaptation and competitiveness in soil. Alteration of the ability to communicate, either by deletion of the gene coding the response regulator AgrA (response-negative mutant) or the signal pro-peptide AgrD (signal-negative mutant), did not affect population dynamics in soil that had been sterilized but survival was altered in biotic soil suggesting that the Agr system of L. monocytogenes was involved to face the complex soil biotic environment. This was confirmed by a set of co-incubation experiments. The fitness of the response-negat…

Bacillus-subtilisMutantlcsh:QR1-502Genetic Fitnessmicrobial ecologymedicine.disease_causelcsh:MicrobiologyQuorum-sensing systemsOriginal Research ArticlePseudomonas-aeruginosaSoil Microbiology2. Zero hunger0303 health sciencesMutationeducation.field_of_studycompetitivenessMicrobiology and Parasitologycell communicationMicrobiologie et ParasitologiefitnessAgricultural sciences[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyInfectious DiseasesSoil microbiologyMicrobiology (medical)PopulationImmunologyLactobacillus-plantarum[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyBiologyMicrobiologyMicrobiologysoil03 medical and health sciences[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyBacterial ProteinsListeria monocytogenesmedicineAgr system;cell communication;competitiveness;fitness;Listeria monocytogenes;soil;biotic interaction;quorum-sensing systems;expression;farm environment;dairy farm;bacterial-populations;pseudomonas-aeruginosa;microbial world;lactobacillus-plantarum;staphylococcus-aureus;bacillus-subtilisStaphylococcus-aureuseducationGene030304 developmental biology[ SDV ] Life Sciences [q-bio]Bacterial-populations030306 microbiologybiotic interactionFarm environmentListeria monocytogenesResponse regulatorMutationDairy farmGenetic Fitnessmicrobial worldSciences agricolesAgr system
researchProduct

Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth

2010

AbstractBackgroundThe antenno-maxilary complex (AMC) forms the chemosensory system of theDrosophilalarva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1,V1), presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS) were affected. Our earlier reports on larval AMC did not argue in favour of a role ofprosin cell fate decision, but strongly suggested thatproscould be involved in the control of other aspect of neuronal development. In order to identify these fu…

Central Nervous SystemMESH : Transcription FactorsMESH: DrosophilaOF-FUNCTION SCREEN;MUSCA-DOMESTICA L;HOUSE-FLY LARVA;FINE-STRUCTURE;AXON GUIDANCE;TRANSCRIPTION FACTOR;PATTERN-FORMATION;GENETIC-ANALYSIS;NERVOUS-SYSTEMGenes InsectMESH: Genes InsectAXON GUIDANCEMUSCA-DOMESTICA L0302 clinical medicineMESH: Gene Expression Regulation DevelopmentalCluster AnalysisDrosophila ProteinsMESH: AnimalsTRANSCRIPTION FACTORMESH: Nerve Tissue ProteinsMESH : Nerve Tissue ProteinsOF-FUNCTION SCREENOligonucleotide Array Sequence AnalysisGenetics0303 health sciencesMESH : Central Nervous SystemMicrobiology and ParasitologyMESH : Genes InsectGene Expression Regulation DevelopmentalNuclear ProteinsMESH: Transcription FactorsNull alleleMicrobiologie et ParasitologieMESH : Oligonucleotide Array Sequence Analysis[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Larva[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]DrosophilaDrosophila ProteinResearch ArticleBiotechnologylcsh:QH426-470MESH: Drosophila Proteinslcsh:BiotechnologyNerve Tissue ProteinsBiotechnologiesBiology03 medical and health sciencesMESH: Gene Expression ProfilingGENETIC-ANALYSIS[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]lcsh:TP248.13-248.65GeneticsAnimalsMESH : Cluster AnalysisMESH: Central Nervous SystemAlleleMESH : DrosophilaAlleles030304 developmental biologyMESH : LarvaMicroarray analysis techniquesHOUSE-FLY LARVAGene Expression ProfilingMESH : Gene Expression ProfilingMESH: AllelesWild typeMESH : Nuclear ProteinsProsperobiology.organism_classificationMESH : Drosophila ProteinsMESH: Cluster AnalysisNERVOUS-SYSTEMGene expression profilinglcsh:GeneticsMESH: Oligonucleotide Array Sequence AnalysisHomeoboxMESH : AnimalsMESH : Gene Expression Regulation DevelopmentalMESH : AllelesMESH: Nuclear ProteinsMESH: Larva030217 neurology & neurosurgeryTranscription FactorsPATTERN-FORMATIONFINE-STRUCTURE
researchProduct

Safety and Pharmacokinetics of Glecaprevir/Pibrentasvir in Adults With Chronic Genotype 1–6 Hepatitis C Virus Infections and Compensated Liver Disease

2019

Background: Untreated, chronic hepatitis C virus (HCV) infection may lead to progressive liver damage, which can be mitigated by successful treatment. This integrated analysis reports the safety, efficacy, and pharmacokinetics (PK) of the ribavirin-free, direct-acting, antiviral, fixed-dose combination of glecaprevir/pibrentasvir (G/P) in patients with chronic HCV genotype 1-6 infections and compensated liver disease, including patients with chronic kidney disease stages 4 or 5 (CKD 4/5). Methods: Data from 9 Phase II and III clinical trials, assessing the efficacy and safety of G/P treatment for 8-16 weeks, were included. The presence of cirrhosis was determined at screening using a liver …

CyclopropanesLiver CirrhosisMaleAminoisobutyric AcidsPyrrolidinesCirrhosisSustained Virologic Responseadverse eventHepacivirusmedicine.disease_causeGastroenterology0302 clinical medicine030212 general & internal medicinePathologie maladies infectieusesSulfonamidesmedicine.diagnostic_testLiver DiseasesPibrentasvirMicrobiologie et protistologie [entomologiephytoparasitolog.]Infectious DiseasesData Interpretation StatisticalLiver biopsyglecaprevir/pibrentasvirHCVDrug Therapy CombinationFemale030211 gastroenterology & hepatologycompensated cirrhosisMicrobiologie et protistologie [parasitologie hum. et anim.]Microbiology (medical)medicine.medical_specialtyGenotypeProlineLactams MacrocyclicHepatitis C virusAntiviral Agents03 medical and health sciencesLeucineQuinoxalinesInternal medicinemedicineHumansAdverse effectAgedbusiness.industryGlecaprevirHepatitis C Chronicmedicine.diseaseBenzimidazolesMicrobiologie et protistologie [bacteriol.virolog.mycolog.]Transient elastographybusinesschronic kidney diseaseKidney diseaseClinical Infectious Diseases
researchProduct