Search results for "molecular clusters"

showing 10 items of 868 documents

Active components for integrated plasmonic circuits

2009

International audience; We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides.

010309 optics[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicComputer science[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0103 physical sciences[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicPhysics::Atomic and Molecular ClustersPhysics::Optics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics01 natural sciences
researchProduct

A Generalized Semiempirical Approach to the Modeling of the Optical Band Gap of Ternary Al-(Ga, Nb, Ta, W) Oxides Containing Different Alumina Polymo…

2021

A generalization of the modeling equation of optical band gap values for ternary oxides, as a function of cationic ratio composition, is carried out based on the semiempirical correlation between the differences in the electronegativity of oxygen and the average cationic electronegativity proposed some years ago. In this work, a novel approach is suggested to account for the differences in the band gap values of the different polymorphs of binary oxides as well as for ternary oxides existing in different crystalline structures. A preliminary test on the validity of the proposed modeling equations has been carried out by using the numerous experimental data pertaining to alumina and gallia p…

010405 organic chemistryGeneralizationChemistryBand gapCationic polymerizationThermodynamicsFunction (mathematics)Aluminum oxideComposition (combinatorics)010402 general chemistry01 natural sciencesArticleMixed oxides0104 chemical sciencesInorganic ChemistryCondensed Matter::Materials ScienceSettore ING-IND/23 - Chimica Fisica ApplicataBand GapPhysics::Atomic and Molecular ClustersPhysics::Chemical PhysicsPhysical and Theoretical ChemistryTernary operation
researchProduct

High-resolution spectroscopy and analysis of the V2 + V3 combination band of SF6 in a supersonic jet expansion

2013

International audience; Sulphur hexafluoride is a very strong greenhouse gas whose concentration is increasing in the atmosphere. It is detected through infrared absorption spectroscopy in the strong ν3 fundamental region. Due to the existence of low-lying vibrational states of this molecule, however, many hot bands arise at room temperature and those are still not known. We present here a contribution to the elucidation of this hot band structure, by analysing the ν2 + ν3 combination band. We use a supersonic jet expansion high-resolution spectrum at a rotational temperature of ca. 25 K that was recorded thanks to the Jet-AILES setup at the Source Optimisée de Lumière d'Energie Intermédiai…

010504 meteorology & atmospheric sciencessupersonic jet expansionBiophysicsInfrared spectroscopy7. Clean energy01 natural sciencesHot bandlaw.inventionsymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]law0103 physical sciencesSupersonic speedPhysical and Theoretical ChemistrySpectroscopy[ PHYS.PHYS.PHYS-ATM-PH ] Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]Molecular BiologyComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]010304 chemical physicssulphur hexafluorideChemistry[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]Rotational temperatureRotational–vibrational spectroscopyCondensed Matter PhysicsSynchrotron[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]13. Climate actiongreenhouse gassymbolsinfrared absorption[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsHamiltonian (quantum mechanics)tensorial formalism
researchProduct

Vibronic Model for Intercommunication of Localized Spins via Itinerant Electron

2019

In this article, we propose a vibronic pseudo Jahn–Teller model for partially delocalized mixed-valence molecules aimed to describe the magnetic coupling between the localized spins mediated by the delocalized electron. The simplest partially delocalized system that retains the main studied features is assumed to consist of a one-electron mixed-valence dimer, which is connected to the two terminal magnetic ions. The model involves the following key interactions: electron transfer in the spin-delocalized subsystem of a mixed-valence molecule, which is mimicked by a dimeric unit, coupling of the itinerant electrons with the molecular vibrations, and isotropic magnetic exchange between the loc…

02 engineering and technologyElectron010402 general chemistry01 natural sciencesMolecular physicsDelocalized electronElectron transferPhysics::Atomic and Molecular ClustersMoleculePhysics::Chemical PhysicsPhysical and Theoretical ChemistryPhysicsSpinsQuàntums Teoria dels021001 nanoscience & nanotechnologyInductive coupling3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCoupling (physics)General EnergyMolecular vibrationEnergiaCondensed Matter::Strongly Correlated Electrons0210 nano-technologyFisicoquímicaThe Journal of Physical Chemistry C
researchProduct

Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide.

2019

Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe2 and MoSe2. We demonstrate, with the support of ab-initio calculations, that layered InSe flakes sustain luminescent excitons with an intrinsic out-of-plane orientation, in contrast with the in-plane orientation of dipoles we find in two-dimensional WSe2 and MoSe2 at room-…

0301 basic medicineMaterials sciencePhotoluminescenceElectronic properties and materialsExcitonScienceGeneral Physics and Astronomychemistry.chemical_elementPhysics::Optics02 engineering and technologyTwo-dimensional materials7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticleCrystal03 medical and health sciencessymbols.namesakeCondensed Matter::Materials SciencePhysics::Atomic and Molecular ClustersPhysics::Atomic Physicslcsh:ScienceMultidisciplinarybusiness.industryCondensed Matter::OtherQGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectDipole030104 developmental biologySemiconductorchemistrysymbolsOptoelectronicslcsh:Qvan der Waals forcePhotonics0210 nano-technologybusinessIndiumNature communications
researchProduct

Interaction of C 60 fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study

2015

Interaction of fullerenes with asymmetric and curved DOPC/DOPS bicelles is studied by means of coarse-grained molecular dynamics simulations. The effects caused by asymmetric lipid composition of the membrane leaflets and the curvature of the membrane are analyzed. It is shown that the aggregates of fullerenes prefer to penetrate into the membrane in the regions of the moderately positive mean curvature. Upon penetration into the hydrophobic core of the membrane fullerenes avoid the regions of the extreme positive or the negative curvature. Fullerenes increase the ordering of lipid tails, which are in direct contact with them, but do not influence other lipids significantly. Our data sugges…

0301 basic medicine[ SDV.BBM.BP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsFullereneLipid BilayersGeneral Physics and AstronomyPhosphatidylserinesModel lipid bilayerMolecular Dynamics SimulationCurvatureQuantitative Biology::Cell BehaviorQuantitative Biology::Subcellular Processes03 medical and health sciencesMolecular dynamicsPhysics::Atomic and Molecular ClustersOrganic chemistryPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSPhysics::Biological PhysicsMean curvatureChemistryPenetration (firestop)[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biophysics030104 developmental biologyMembraneMembrane curvatureBiophysicsPhosphatidylcholineslipids (amino acids peptides and proteins)Fullerenes
researchProduct

$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation

2019

Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…

1000ProtonNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaStrong interactionNuclear TheoryFOS: Physical sciences01 natural sciencesAsymmetryNuclear Theory (nucl-th)Magic number (programming)0103 physical sciencesEffective field theoryPhysics::Atomic and Molecular ClustersNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Experimentmedia_commonPhysics[PHYS]Physics [physics]Multidisciplinary010308 nuclear & particles physicsMagic (programming)Atomic nucleusAtomic physics
researchProduct

Ab initio calculations of pure and Co+2-doped MgF2 crystals

2020

This research was partly supported by the Kazakhstan Science Project № AP05134367«Synthesis of nanocrystals in track templates of SiO2/Si for sensory, nano- and optoelectronic applications», as well as by Latvian Research Council project lzp-2018/1-0214. Calculations were performed on Super Cluster (LASC) in the Institute of Solid State Physics (ISSP) of the University of Latvia. Authors are indebted to S. Piskunov for stimulating discussions.

AB INITIO CALCULATIONSNuclear and High Energy PhysicsMaterials scienceSpin statesBand gapAb initioENERGY GAP02 engineering and technologyFLUORINE COMPOUNDS01 natural sciences7. Clean energyMolecular physicsAb initio quantum chemistry methodsCobalt dopant0103 physical sciencesPhysics::Atomic and Molecular Clusters:NATURAL SCIENCES:Physics [Research Subject Categories]MgF2010306 general physicsFluorideInstrumentationCOBALT DOPANTSDopantCRYSTAL ATOMIC STRUCTUREDopingCOBALT COMPOUNDSMAGNESIUM COMPOUNDSDOPANT ENERGY LEVELS021001 nanoscience & nanotechnologyVIBRATIONAL STRUCTURESCALCULATIONSCRYSTALSGROUND STATELinear combination of atomic orbitalsCELL PROLIFERATIONAb initioGROUND STATE LEVELS0210 nano-technologyGround state
researchProduct

Negative thermal expansion in cuprite-type compounds: A combined synchrotron XRPD, EXAFS, and computational study of Cu2O and Ag2O

2006

Cuprite-type oxides (Cu2O and Ag2O) are framework structures composed by two interpenetrated networks of metal-sharing M4O tetrahedra (M = Cu, Ag). Both compounds exhibit a peculiar negative thermal expansion (NTE) behaviour over an extended temperature range (9 240 K for Cu2O, 30-470 K for Ag2O). High-accuracy synchrotron powder diffraction and EXAFS measurements were performed from 10 K up to the decomposition temperature to understand the nature of the NTE effects. The critical comparison of the diffraction and absorption results concerning the temperature dependence of the interatomic distances and of the atomic vibrational parameters proves to be fundamental in defining the local dynam…

ABSORPTION FINE-STRUCTUREPOWDER DIFFRACTIONExtended X-ray absorption fine structureChemistryThermal decompositionCupriteCharge densityGeneral ChemistryAtmospheric temperature rangeCondensed Matter PhysicsThermal expansionCrystallographyChemical bondNegative thermal expansionPhysics::Atomic and Molecular ClustersSCATTERINGRADIATIONGeneral Materials ScienceThermal expansionTEMPERATUREPowder diffractionJournal of Physics and Chemistry of Solids
researchProduct

Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

2016

Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is e…

ANTIHYDROGENGeneral PhysicsAntiparticlepositronium0205 Optical Physics0307 Theoretical And Computational ChemistryPLASMASCONFINEMENTPhysics Atomic Molecular & Chemical01 natural sciences010305 fluids & plasmasPositroniumsymbols.namesake0202 Atomic Molecular Nuclear Particle And Plasma PhysicsIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAntihydrogenpositronsPhysicsCondensed Matter::Quantum GasesScience & TechnologyPhysicsOpticsRydberg statesCondensed Matter PhysicsAtomic and Molecular Physics and Opticscharge-exchangeExcited stateAntimatterPhysical SciencesRydberg formulasymbolsAtomic physicsLepton
researchProduct