Search results for "molecular sequence data"

showing 10 items of 1928 documents

The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrh…

2012

We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The iden- tification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members…

0106 biological sciencesSucrose[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesSIEVE ELEMENTSchemistry.chemical_compoundGene Expression Regulation Plantsucrose transporterMycorrhizaePHLOEMROOTSPlant Proteins2. Zero hungerRegulation of gene expression0303 health sciencesPHOSPHATE TRANSPORTERbiologyfood and beveragesARABIDOPSISSUTMedicago truncatulasugar partitioning[SDE]Environmental Sciencessugar transportGlomus intraradicesEXPRESSIONTOMATO SUGAR TRANSPORTERMolecular Sequence DataGENE FAMILYPhosphates03 medical and health sciencesSymbiosisBotanyMedicago truncatula[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSSugarGlomeromycotaSymbiosisGeneMolecular Biology030304 developmental biologyfungiMembrane Transport Proteins15. Life on landbiology.organism_classificationMONOSACCHARIDE TRANSPORTERYeastCarbonchemistryHeterologous expression010606 plant biology & botanyMolecular plant
researchProduct

The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells

2002

Summary A cDNA encoding a protein, NtrbohD, located on the plasma membrane and homologue to the flavocytochrome of the neutrophil NADPH oxidase, was cloned in tobacco. The corresponding mRNA was accumulated when tobacco leaves and cells were treated with the fungal elicitor cryptogein. After elicitation with cryptogein, tobacco cells transformed with antisense constructs of NtrbohD showed the same extracellular alkalinization as the control, but no longer produced active oxygen species (AOS). This work represents the first demonstration of the function of a homologue of gp91–phox in AOS production in elicited tobacco cells.

0106 biological sciencesTime FactorsNicotiana tabacumMolecular Sequence DataPlant ScienceBiologyGenes Plant01 natural sciencesFungal Proteins[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsComplementary DNATobaccoGene expressionGeneticsExtracellularAOSAmino Acid SequenceRNA MessengerCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesOxidase testNADPH oxidaseGene Expression ProfilingAlgal ProteinsCell MembraneHydrogen PeroxideCell BiologyHydrogen-Ion ConcentrationPlants Genetically Modifiedbiology.organism_classification3. Good healthElicitorCell biologyPlant LeavesProtein TransportBiochemistryCell culturebiology.proteinOxidoreductasesReactive Oxygen Species010606 plant biology & botany
researchProduct

Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula.

2010

International audience; Expression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcp1a and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Time-course analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development. In a second experiment, a range of mycor…

0106 biological sciencesTranscription GeneticPhysiologyGLOMUS INTRARADICESMutantMolecular Sequence Data01 natural sciences03 medical and health sciencesTranscription (biology)Gene Expression Regulation PlantBLUE COPPER-BINDINGMYCRORHIZE ARBUSCULAIREMycorrhizaeGene expressionBotanyMedicago truncatulaProtein Isoforms[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRELATION PLANTE-MICROORGANISMEMycorrhizaGenePhylogeny030304 developmental biologyPlant Proteins2. Zero hunger0303 health sciencesbiologyfungiGeneral Medicinebiology.organism_classificationMolecular biologyMedicago truncatulaGene expression profilingReal-time polymerase chain reactionCarrier ProteinsAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct

Pseudomonas salomonii sp. nov., pathogenic on garlic, and Pseudomonas palleroniara sp. nov., isolated from rice

2002

International audience; A total of 26 strains, including 15 strains isolated from garlic plants with the typical symptoms of 'Café au lait' disease and 11 strains isolated from diseased or healthy rice seeds and sheaths infested by Pseudomonas fuscovaginae, were compared with 70 type or reference strains of oxidase-positive pathogenic or non-pathogenic fluorescent pseudomonads. The strains were characterized by using a polyphasic taxonomic approach. Numerical taxonomy of phenotypic characteristics showed that the garlic and rice strains were related to each other. However, they clustered into separate phenons, distinct from those of the other strains tested, and were different in several nu…

0106 biological sciences[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesIdentificationADNPhénotype01 natural sciencesphenotypic characteristicsPseudomonas fuscovaginaeRNA Ribosomal 16SPhylogeny2. Zero hungerBase Composition0303 health sciencesbiologyPhylogenetic treeDNA–DNA hybridizationfood and beveragesGeneral MedicinePseudomonas palleronianaRNA BacterialPhenotypehttp://aims.fao.org/aos/agrovoc/c_5435Pseudomonas palleronianaPseudomonas salomoniiAllium sativumhttp://aims.fao.org/aos/agrovoc/c_290DNA Bacterialhttp://aims.fao.org/aos/agrovoc/c_27578Pseudomonas salomoniiPhenotypic characteristicMolecular Sequence DataDNA Ribosomal010603 evolutionary biologyMicrobiologyMicrobiologyNumerical taxonomy03 medical and health sciencesTerminology as TopicPseudomonaspolyphasic taxonomyGarlicGeneEcology Evolution Behavior and SystematicsH20 - Maladies des plantes030304 developmental biologyDNA-DNA hybridizationHybridation moléculaireSettore AGR/12 - Patologia VegetaleOryzaTaxonomie16S ribosomal RNAbiology.organism_classificationhttp://aims.fao.org/aos/agrovoc/c_3791http://aims.fao.org/aos/agrovoc/c_6304http://aims.fao.org/aos/agrovoc/c_5776Genes Bacterialhttp://aims.fao.org/aos/agrovoc/c_2347http://aims.fao.org/aos/agrovoc/c_7631
researchProduct

Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled?

2011

Copyright © 2011 Augustinos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Aphids are a serious threat to agriculture, despite being a rather small group of insects. The about 4,000 species worldwide engage in highly interesting and complex relationships with their microbial fauna. One of the key symbionts in arthropods is Wolbachia, an a-Proteobacterium implicated in many important biological processes and believed to be a potential tool for biological control. Aphids were thought not to harbour W…

0106 biological sciences[SDV]Life Sciences [q-bio]FaunaPopulation DynamicsBiological pest controllcsh:MedicineWolbachia InfectionsPolymerase Chain Reaction01 natural sciencesRNA Ribosomal 16SGenotypelcsh:SciencePhylogenyreproductive and urinary physiologyGenetics0303 health sciencesMultidisciplinaryfood and beveragesAgricultureWolbachiaWolbachiaResearch ArticleGenotypeMolecular Sequence DataAgro-Population EcologyZoologyBiologyDNA RibosomalMicrobiology010603 evolutionary biologyMicrobial Ecology03 medical and health sciencesPhylogeneticsparasitic diseasesGenetic variationAnimalsBiologyAlleles030304 developmental biologyEvolutionary Biologylcsh:RBacterial TaxonomyGenetic VariationBacteriologybiochemical phenomena metabolism and nutritionRibosomal RNAbiology.organism_classificationOrganismal EvolutionAphidsMicrobial EvolutionbacteriaMultilocus sequence typinglcsh:QGram-Negative Bacterial InfectionsZoologyEntomologyAgroecologyMultilocus Sequence TypingPLoS ONE
researchProduct

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

2016

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

0301 basic medicine300323-Dihydrobenzofuran privileged structure; Cancer; Inflammation; Molecular docking; mPGES-1 inhibitors; Biochemistry; Clinical Biochemistry; Molecular Biology; Molecular Medicine; Organic Chemistry; Drug Discovery3003 Pharmaceutical Science; 3003Amino Acid MotifsClinical BiochemistryGene ExpressionPharmaceutical Science01 natural sciencesClinical biochemistryBiochemistry[ CHIM ] Chemical SciencesProtein Structure Secondary[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundLow affinityDrug DiscoveryEnzyme Inhibitors23-Dihydrobenzofuran privileged structure; Molecular docking; mPGES-1 inhibitors; Cancer; InflammationProstaglandin-E SynthasesCancerAnti-Inflammatory Agents Non-SteroidalBiological activityProto-Oncogene Proteins c-metIntramolecular OxidoreductasesMolecular Docking SimulationMolecular dockingMolecular Medicinelipids (amino acids peptides and proteins)Cell SurvivalStereochemistryMolecular Sequence Data2Antineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancer3-Dihydrobenzofuran privileged structureInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesCell Line TumorMicrosomesHumans[CHIM]Chemical SciencesMolecular BiologyBenzofuransInflammationNatural product010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryEpithelial CellsmPGES-1 inhibitorsCombinatorial chemistryCombined approach0104 chemical sciences030104 developmental biologychemistryDrug DesignDrug Screening Assays Antitumor
researchProduct

OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digi…

2016

Item does not contain fulltext Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentrio…

0301 basic medicineCentriolecell-cycle progressionGene Expressionmedicine.disease_causeCiliopathieshuman-disease genemolecular characterizationbbs proteinsGenetics (clinical)Conserved SequenceCentriolesGeneticsMutationCiliumCiliary transition zoneMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]General MedicineOrofaciodigital Syndromes3. Good healthcentriolar satellitesmultiple sequence alignmentbasal body dockingFemaleMicrotubule-Associated ProteinsProtein BindingHeterozygoteMolecular Sequence DataBiology03 medical and health sciencesIntraflagellar transportCiliogenesis[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansAmino Acid SequenceCiliaMolecular BiologyCentrosomeintraflagellar transportBase SequenceInfant NewbornProteins030104 developmental biologyCentrosomeMutationciliary transition zoneSequence Alignment[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyciliogenesis
researchProduct

Marinomonas spartinae sp. nov., a novel species with plant-beneficial properties.

2016

Two strains of Gram-stain-negative, chemo-organotrophic, aerobic and halophilic gammaproteobacteria, isolated from within the stem and roots of Spartina maritima in salt marshes from the south Atlantic Spanish coast, were found to represent a novel species in the genus Marinomonas through phylogenetic analysis of their 16S rRNA genes and phenotypic characterization. 16S rRNA gene sequences of the two strains shared < 96.2 % similarity with other Marinomonas species, with Marimonas alcarazii being the most similar in sequence. They required sodium ions for growth, were able to thrive at low (4 °C) temperatures and at salinities of 12–15 %, were unable to hydrolyse any tested macromolecule ex…

0301 basic medicineDNA BacterialMarinomonasMolecular Sequence DataBiologyPoaceaeMicrobiologyPlant Roots03 medical and health sciencesRNA Ribosomal 16SGammaproteobacteriaBotanyEndophytesSugarMarinomonasEcology Evolution Behavior and SystematicsPhylogenychemistry.chemical_classificationBase CompositionPhylogenetic treePlant StemsFatty AcidsNucleic Acid HybridizationGeneral MedicineSequence Analysis DNA16S ribosomal RNAbiology.organism_classificationHalophileAmino acidBacterial Typing Techniques030104 developmental biologychemistrySpainWetlandslipids (amino acids peptides and proteins)Spartina maritimaInternational journal of systematic and evolutionary microbiology
researchProduct

Toxicological implications of enzymatic control of reactive metabolites.

1990

Many foreign compounds are transformed into reactive metabolites, which may produce genotoxic effects by chemically altering critical biomolecules. Reactive metabolites are under the control of activating, inactivating and precursor sequestering enzymes. Such enzymes are under the long-term control of induction and repression, as well as the short-term control of post-translational modification and low molecular weight activators or inhibitors. In addition, the efficiency of these enzyme systems in preventing reactive metabolite-mediated toxicity is directed by their subcellular compartmentalization and isoenzymic multiplicity. Extrapolation from toxicological test systems to the human req…

0301 basic medicineHealth Toxicology and MutagenesisMetaboliteMolecular Sequence DataMutagenBiologyToxicologymedicine.disease_causeGene Expression Regulation Enzymologic03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCytosolEthers CyclicMicrosomesmedicineHumansPsychological repressionCarcinogenGlutathione Transferasechemistry.chemical_classificationEpoxide Hydrolases030102 biochemistry & molecular biologyBase SequenceBiomoleculeGeneral MedicineIsoenzymesEnzymeBiochemistrychemistry030220 oncology & carcinogenesisToxicityEpoxy CompoundsXenobioticHumanexperimental toxicology
researchProduct

Transforming growth factor β (CiTGF-β) gene expression is induced in the inflammatory reaction of Ciona intestinalis.

2016

Transforming growth factor (TGF-β) is a well-known component of a regulatory cytokines superfamily that has pleiotropic functions in a broad range of cell types and is involved, in vertebrates, in numerous physiological and pathological processes. In the current study, we report on Ciona intestinalis molecular characterisation and expression of a transforming growth factor β homologue (CiTGF-β). The gene organisation, phylogenetic tree and modelling supported the close relationship with the mammalian TGF suggesting that the C. intestinalis TGF-β gene shares a common ancestor in the chordate lineages. Functionally, real-time PCR analysis showed that CiTGF-β was transcriptionally upregulated …

0301 basic medicineLipopolysaccharidesCell typeHemocytesTGFbeta Ciona intestinalisCellular differentiationImmunologyMolecular Sequence DataSettore BIO/05 - ZoologiaBiology03 medical and health sciences0302 clinical medicineImmune systemTranscription (biology)Transforming Growth Factor betaGene expressionAnimalsCiona intestinalisAmino Acid SequenceCloning MolecularGenePhylogenyInflammationMammalsbiology.organism_classificationImmunity InnateCell biologyCiona intestinalisUp-Regulation030104 developmental biologyImmunologyPharynx030217 neurology & neurosurgeryDevelopmental BiologyTransforming growth factorDevelopmental and comparative immunology
researchProduct