Search results for "monistot"
showing 10 items of 19 documents
The linearized Calderón problem on complex manifolds
2019
International audience; In this note we show that on any compact subdomain of a Kähler manifold that admits sufficiently many global holomorphic functions , the products of harmonic functions form a complete set. This gives a positive answer to the linearized anisotropic Calderón problem on a class of complex manifolds that includes compact subdomains of Stein manifolds and sufficiently small subdomains of Kähler manifolds. Some of these manifolds do not admit limiting Carleman weights, and thus cannot by treated by standard methods for the Calderón problem in higher dimensions. The argument is based on constructing Morse holo-morphic functions with approximately prescribed critical points.…
Approximation of functions over manifolds : A Moving Least-Squares approach
2021
We present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension $d$. We use the Manifold Moving Least-Squares approach of (Sober and Levin 2016) to reconstruct the atlas of charts and the approximation is built on-top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated…
Mappings of Finite Distortion : Compactness of the Branch Set
2017
We show that an entire branched cover of finite distortion cannot have a compact branch set if its distortion satisfies a certain asymptotic growth condition. We furthermore show that this bound is strict by constructing an entire, continuous, open and discrete mapping of finite distortion which is piecewise smooth, has a branch set homeomorphic to an (n - 2)-dimensional torus and distortion arbitrarily close to the asymptotic bound. Peer reviewed
Conformality and $Q$-harmonicity in sub-Riemannian manifolds
2016
We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
2022
In this article we study the linearized anisotropic Calderon problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a complete set. We assume that the manifold is transversally anisotropic and that the transversal manifold is real analytic and satisfies a geometric condition related to the geometry of pairs of intersecting geodesics. In this case, we solve the linearized anisotropic Calderon problem. The geometric condition does not involve the injectivity of the geodesic X-ray transform. Crucial ingredients in the proof of our result are the construction of Gaussian beam quasimodes on the tra…
Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
2018
AbstractThe main result of this paper is the following: anyweightedRiemannian manifold$(M,g,\unicode[STIX]{x1D707})$,i.e., a Riemannian manifold$(M,g)$endowed with a generic non-negative Radon measure$\unicode[STIX]{x1D707}$, isinfinitesimally Hilbertian, which means that its associated Sobolev space$W^{1,2}(M,g,\unicode[STIX]{x1D707})$is a Hilbert space.We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold$(M,F,\unicode[STIX]{x1D707})$can be isometrically embedded into the space of all measurable sections of the tangent bundle of$M$that are$2$-integrable with respect to$\unicode[STIX]{x1D707}$.By following the…
Universal infinitesimal Hilbertianity of sub-Riemannian manifolds
2019
We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.
The geodesic X-ray transform with matrix weights
2019
Consider a compact Riemannian manifold of dimension $\geq 3$ with strictly convex boundary, such that the manifold admits a strictly convex function. We show that the attenuated ray transform in the presence of an arbitrary connection and Higgs field is injective modulo the natural obstruction for functions and one-forms. We also show that the connection and the Higgs field are uniquely determined by the scattering relation modulo gauge transformations. The proofs involve a reduction to a local result showing that the geodesic X-ray transform with a matrix weight can be inverted locally near a point of strict convexity at the boundary, and a detailed analysis of layer stripping arguments ba…
Translating Solitons Over Cartan-Hadamard Manifolds
2020
We prove existence results for entire graphical translators of the mean curvature flow (the so-called bowl solitons) on Cartan-Hadamard manifolds. We show that the asymptotic behaviour of entire solitons depends heavily on the curvature of the manifold, and that there exist also bounded solutions if the curvature goes to minus infinity fast enough. Moreover, it is even possible to solve the asymptotic Dirichlet problem under certain conditions.
Pestov identities and X-ray tomography on manifolds of low regularity
2021
We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds $(M,g)$ with $g \in C^{1,1}$. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This $C^{1,1}$-regularity is optimal on the H\"older scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.