Search results for "multiscale"
showing 10 items of 78 documents
Multiscale Model Selection for High-Frequency Financial Data of a Large Tick Stock by Means of the Jensen–Shannon Metric
2014
Modeling financial time series at different time scales is still an open challenge. The choice of a suitable indicator quantifying the distance between the model and the data is therefore of fundamental importance for selecting models. In this paper, we propose a multiscale model selection method based on the Jensen–Shannon distance in order to select the model that is able to better reproduce the distribution of price changes at different time scales. Specifically, we consider the problem of modeling the ultra high frequency dynamics of an asset with a large tick-to-price ratio. We study the price process at different time scales and compute the Jensen–Shannon distance between the original…
Multiscale Approach in Studying the Influence of Annealing Conditions on Conductivity of TiO2 Nanotubes
2015
Titanium oxide nanotubes (NTs) have attracted much attention during last decade due to their special characteristics such as one-dimensional highly ordered geometry with large surface area and good chemical and optical stability.
Shock formation in the dispersionless Kadomtsev-Petviashvili equation
2016
The dispersionless Kadomtsev-Petviashvili (dKP) equation $(u_t+uu_x)_x=u_{yy}$ is one of the simplest nonlinear wave equations describing two-dimensional shocks. To solve the dKP equation we use a coordinate transformation inspired by the method of characteristics for the one-dimensional Hopf equation $u_t+uu_x=0$. We show numerically that the solutions to the transformed equation do not develop shocks. This permits us to extend the dKP solution as the graph of a multivalued function beyond the critical time when the gradients blow up. This overturned solution is multivalued in a lip shape region in the $(x,y)$ plane, where the solution of the dKP equation exists in a weak sense only, and a…
Multiscale modeling of polycrystalline materials: A boundary element approach to material degradation and fracture
2015
Abstract In this work, a two-scale approach to degradation and failure in polycrystalline materials is proposed. The formulation involves the engineering component level (macro-scale) and the material grain level (micro-scale). The macro-continuum is modeled using a three-dimensional boundary element formulation in which the presence of damage is formulated through an initial stress approach to account for the local softening in the neighborhood of points experiencing degradation at the micro-scale. The microscopic degradation is explicitly modeled by associating Representative Volume Elements (RVEs) to relevant points of the macro continuum, for representing the polycrystalline microstruct…
Supramolecular self-assembly on the B-Si(111)-(√3x√3) R30° surface: From single molecules to multicomponent networks
2017
Abstract Understanding the physical and chemical processes in which local interactions lead to ordered structures is of particular relevance to the realization of supramolecular architectures on surfaces. While spectacular patterns have been demonstrated on metal surfaces, there have been fewer studies of the spontaneous organization of supramolecular networks on semiconductor surfaces, where the formation of covalent bonds between organics and adatoms usually hamper the diffusion of molecules and their subsequent interactions with each other. However, the saturation of the dangling bonds at a semiconductor surface is known to make them inert and offers a unique way for the engineering of m…
Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures: Part 3. Multiscale reconstruction…
2008
International audience; This third article describes a multiscale process which takes into account the most important microscopic phenomena associated with composite degradation, including fibre fractures and interfacial debonding, overloading of fibres neighbouring a fibre break as well as viscoelastic behaviour of the matrix. The results have been used to accurately predict the macroscopic failure of unidirectional carbon fibre-reinforced epoxy and quantify damage accumulation in pressure vessels made of the same material. The approach described has allowed the acoustic emission activity resulting from fibres breaks to be evaluated and shown how the residual lifetimes of such vessels, whe…
A multiscale method for gamma/h discrimination in extensive air showers
2011
We present a new method for the identification of extensive air showers initiated by different primaries. The method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of secondary particle distributions together with a properly designed and trained artificial neural network. The separation technique is particularly suited for being applied when the topology of the particle distribution in the shower front is as largely detailed as possible. Here, our method is discussed and applied to a set of fully simulated vertical showers in the experimental framework of ARGO-YBJ, taking advantage of both the space and time distribution of the detected sec…
A computational framework for low-cycle fatigue in polycrystalline materials
2021
Abstract A three-dimensional framework for low-cycle fatigue analysis of polycrystalline aggregates is proposed in this work. First, a cohesive law coupling plasticity and damage is developed for modelling cycle-by-cycle degradation of material interfaces up to complete de-cohesion and failure. The law may model both quasi-static degradation under increasing monotonic load and degradation under cyclic loading, through a coupled plasticity-damage model whose activation and flow rules are formulated in a thermodynamically consistent framework. The proposed interface laws have been then implemented and coupled with a multi-region boundary element formulation, with the aim of analysing low-cycl…
Reaction-Diffusion Network For Geometric Multiscale High Speed Image Processing
2010
International audience; In the framework of heavy mid-level processing for high speed imaging, a nonlinear bi-dimensional network is proposed, allowing the implementation of active curve algorithms. Usually this efficient type of algorithm is prohibitive for real-time image processing due to its calculus charge and the inadequate structure for the use of serial or parallel architectures. Another kind of implementation philosophy is proposed here, by considering the active curve generated by a propagation phenomenon inspired from biological modeling. A programmable nonlinear reaction-diffusion system is proposed under front control and technological constraints. Geometric multiscale processin…
New insights into the use of rhizobia to mitigate soil N2O emissions
2022
Agriculture is a major anthropogenic source of the greenhouse gas N2O, which is also involved in stratospheric ozone depletion. While the use of rhizobial inoculants has already been reported as an emerging option for mitigating soil N2O emissions, this study presents an in situ abatement of 70% of soil N2O emission using the strain nosZ+ G49 vs. nosZ− USDA138 in association with soybean. Therefore, we consider that the choice of the inoculant strain of a leguminous crop should take into account the capacity of strains to reduce nitrous oxide in addition to their N fixation capacity. This study also clearly suggests that this mitigation option could be considered not only for soybean but al…