Search results for "nanochemistry"
showing 10 items of 26 documents
Interdisciplinary Nature of Nanoscience: Implications for Education
2016
A lot of expectations rest on the interdisciplinarity of nanoscience, and it has even been proposed as the deciding factor in the progress of the field [1]. What opportunities and challenges does the interdisciplinary nature of nanoscience bring to science education at different levels? This chapter first analyzes the much‐discussed interdisciplinarity of nanoscience today, and then discusses how and why those features should be addressed in education. peerReviewed
Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers
2012
Abstract Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditi…
Optical, Electrochemical, and Catalytic Properties of the Unsaturated Host Pd3(dppm)3(CO)2+and Pd4(dppm)4(H)2+2Clusters: An Overview
2004
This paper presents an overview of the optical, photophysical, and photochemical properties including UV-visible and luminescence spectra in solution at 298 and 77 K, along with electrochemical, and catalytic behavior under reduction conditions (for both thermally and electrochemically assisted systems) of the tri- and tetranuclear Pd3(dppm)3(CO)2+ and Pd4(dppm)4(H)2+ 2 clusters (dppm=bis(diphenylphosphino)methane). This review is also complemented with relevant information about their syntheses, molecular and electronic structures supported from computer modeling, EHMO and DFT calculations, and their host-guest behavior with anions and neutral molecules, in relation with their observed rea…
On the preparation of simple and universal buffers including polynuclear species
1986
A simple generalized procedure for the calculation of electrolyte concentrations in pH-buffers is proposed. Mixtures of acid-base systems and formation of polynuclear species at high ionic strengths are considered, and a diagram useful for the study and preparation of the buffers is shown.
Electrosynthesis of 3,3′,5,5’-tetramethyl-2,2′-biphenol in flow
2020
Abstract3,3′,5,5’-Tetramethyl-2,2′-biphenol is well known as an outstanding building block for ligands in transition-metal catalysis and is therefore of particular industrial interest. The electro-organic method is a powerful, sustainable, and efficient alternative to conventional synthetic approaches to obtain symmetric and non-symmetric biphenols. Here, we report the successive scale-up of the dehydrogenative anodic homocoupling of 2,4-dimethylphenol (4) from laboratory scale to the technically relevant scale in highly modular narrow gap flow electrolysis cells. The electrosynthesis was optimized in a manner that allows it to be easily adopted to different scales such as laboratory, semit…
Continuous-Flow Synthesis of Ni(0) Nanoparticles Using a Cone Channel Nozzle or a Micro Coaxial-Injection Mixer
2015
To synthesize nickel(0) nanoparticles by wet chemical reduction using hydrazine with an average size distribution below 100 nm, two different reactor concepts were developed. With a cone channel nozzle, the reactant solutions were sprayed into a batch for further processing and reduction at elevated temperatures. Another concept uses a micro-coaxial injection mixer connected to a heated tube to establish a fully continuously operating reactor. To shorten the time for reduction of the nickel, salt temperatures up to 180 °C are applied. To avoid uncontrolled residence time, the whole system was pressurized up to 80 bar. Approximately 80 L reactant solution, i.e., 1 kg nickel(0) nanoparticles,…
Optical and Vibrational Spectra of CsCl-Enriched GeS2-Ga2S3 Glasses
2016
Optical and FTIR spectroscopy was employed to study the properties of 80GeS2-20Ga2S3-CsCl chalcohalide glasses with CsCl additives in a temperature range of 77–293 K. It is shown that CsCl content results in the shift of fundamental absorption edge in the visible region. Vibrational bands in FTIR spectra of (80GeS2-20Ga2S3)100 − х (СsCl) x (x = 5, 10, and 15) are identified near 2500 cm−1, 3700 cm−1,, around 1580 cm−1, and a feature at 1100 cm−1. Low energy shifts of vibrational frequencies in glasses with a higher amount of CsCl can be caused by possible thermal expansion of the lattice and nanovoid agglomeration formed by CsCl additives in the inner structure of the Ge-Ga-S glass.
La 1−xCaxMnO3 semiconducting nanostructures: morphology and thermoelectric properties
2014
Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1−xCa x MnO3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has b…
High spatial resolution mapping of individual and collective localized surface plasmon resonance modes of silver nanoparticle aggregates: correlation…
2015
Non-isolated nanoparticles show a plasmonic response that is governed by the localized surface plasmon resonance (LSPR) collective modes created by the nanoparticle aggregates. The individual and collective LSPR modes of silver nanoparticle aggregated by covalent binding by means of bifunctional molecular linkers are described in this study. Individual contributions to the collective modes are investigated at nanometer scale by means of energy-filtering transmission electron microscopy and compared to ultraviolet–visible spectroscopy. It is found that the aspect ratio and the shape of the clusters are the two main contributors to the low-energy collective modes.
Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye
2011
We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splittings, with energies up to 360 and 190 meV, are observed at the positions of the dye absorption maxima. The split energies are dependent on the number of Sulforhodamine 101 molecules involved in the coupling process. Transfer matrix and coupled oscillator methods are used to model the studied multilaye…