6533b85ffe1ef96bd12c1d8f

RESEARCH PRODUCT

Optical and Vibrational Spectra of CsCl-Enriched GeS2-Ga2S3 Glasses

Ivan KarbovnykHalyna KlymMaruangela Cestelli GuidiAnatoly I. PopovOleksandra Hotra

subject

Materials scienceChalcohalide glassChalcogenideAnalytical chemistryNanochemistry02 engineering and technologyModification01 natural sciencesThermal expansionVibrational propertieschemistry.chemical_compound78.70.BjMaterials Science(all)Lattice (order)0103 physical sciencesGeneral Materials ScienceFourier transform infrared spectroscopy010302 applied physicsNano ExpressChalcogenide61.43.Fs71.23.CqAtmospheric temperature rangeOptical spectra021001 nanoscience & nanotechnologyCondensed Matter Physics81.70PgchemistryAbsorption edge82.56Ub0210 nano-technologyVibrational spectra

description

Optical and FTIR spectroscopy was employed to study the properties of 80GeS2-20Ga2S3-CsCl chalcohalide glasses with CsCl additives in a temperature range of 77–293 K. It is shown that CsCl content results in the shift of fundamental absorption edge in the visible region. Vibrational bands in FTIR spectra of (80GeS2-20Ga2S3)100 − х (СsCl) x (x = 5, 10, and 15) are identified near 2500 cm−1, 3700 cm−1,, around 1580 cm−1, and a feature at 1100 cm−1. Low energy shifts of vibrational frequencies in glasses with a higher amount of CsCl can be caused by possible thermal expansion of the lattice and nanovoid agglomeration formed by CsCl additives in the inner structure of the Ge-Ga-S glass.

10.1186/s11671-016-1350-8http://dx.doi.org/10.1186/s11671-016-1350-8