Search results for "nanoreactor"

showing 10 items of 17 documents

SBA-15/POSS-Imidazolium Hybrid as Catalytic Nanoreactor

2019

Supported imidazolium modified polyhedral oligomeric silsesquioxanes (POSS) on SBA-15 have been used as platform for Pd(II) species. The so-obtained material was firstly characterized by means of TGA, solid state NMR, TEM, XPS, SAXS, porosimetry and ICP-OES and it was successfully tested as pre-catalyst in C−C cross couplings, namely Suzuki-Miyaura and Heck reactions. In both cases, the solid proved to be highly efficient and easily recoverable from the reaction mixture. The recyclability was verified for up to seven cycles without showing any activity decrease. Interestingly, only Pd(II) was detected in the reused catalyst in the Heck reaction. Therefore, the versatility of the material w…

ChemistryC−C couplingchemistry.chemical_elementGeneral ChemistryNanoreactorSettore CHIM/06 - Chimica OrganicaHeterogeneous catalysispalladiumCoupling reactionCatalysisC c couplingHeck reactionheterogeneous catalysisHeck reactionPolymer chemistryheterogeneous catalysiSuzuki-Miyaura reactionPalladiumAdvanced Synthesis and Catalysis
researchProduct

Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols.

2016

We introduce active surfaces generated by immobilizing protein-polymer nanoreactors on a solid support for sensitive sugar alcohols detection. First, such selective nanoreactors were engineered in solution by simultaneous encapsulation of specific enzymes in copolymer polymersomes, and insertion of membrane proteins for selective conduct of sugar alcohols. Despite the artificial surroundings, and the thickness of the copolymer membrane, functionality of reconstituted Escherichia coli glycerol facilitator (GlpF) was preserved, and allowed selective diffusion of sugar alcohols to the inner cavity of the polymersome, where encapsulated ribitol dehydrogenase (RDH) enzymes served as biosensing e…

Models MolecularMaterials scienceMembrane permeabilityPolymersSurface PropertiesBiophysicsBioengineering02 engineering and technologyNanoreactorBiosensing Techniques010402 general chemistryRibitolAquaporins01 natural sciencesPermeabilityBiomaterialschemistry.chemical_compoundSugar AlcoholsEscherichia coliOrganic chemistrySugar alcoholRibitolchemistry.chemical_classificationEscherichia coli Proteins021001 nanoscience & nanotechnology0104 chemical sciencesNanostructuresMembraneImmobilized ProteinschemistryMechanics of MaterialsPolymersomeCeramics and Composites0210 nano-technologyBiosensorSugar Alcohol DehydrogenasesSugar Alcohol DehydrogenasesBiomaterials
researchProduct

Functional Polymer-Opals from Core-Shell Colloids

2007

Colloidal photonic crystals were prepared from monodisperse core-shell particles. The shell is hereby formed from a functional monomer, such as glycidylmethacrylate or different reactive ester monomers, which can perform chemical reactions and the core from a standard monomer, which yields highly monodisperse colloids. It was possible to crystallize the core-shell particles into artificial opals with excellent optical properties. Reactions on the functional surface of the colloids were carried out, which lead to a dramatic rise in the mechanical stability or to a functionalization of His-tagged silicatein, which acts as nanoreactor to synthesize and immobilize gold nanoparticles from auric …

chemistry.chemical_classificationMaterials sciencePolymers and Plasticsdigestive oral and skin physiologyOrganic ChemistryDispersityEmulsion polymerizationNanoreactorPolymerColloidal crystalchemistry.chemical_compoundMonomerchemistryChemical engineeringColloidal goldPolymer chemistryMaterials ChemistrySurface modificationMacromolecular Rapid Communications
researchProduct

Self-assembly of catalytically-active supramolecular coordination compounds within metal-organic frameworks

2019

[EN] Supramolecular coordination compounds (SCCs) represent the power of coordination chemistry methodologies to self-assemble discrete architectures with targeted properties. SCCs are generally synthesized in solution, with isolated fully coordinated metal atoms as structural nodes, thus severely limited as metal-based catalysts. Metal-organic frameworks (MOFs) show unique features to act as chemical nanoreactors for the in situ synthesis and stabilization of otherwise not accessible functional species. Here, we present the self-assembly of Pd-II SCCs within the confined space of a pre-formed MOF (SCCs@MOF) and its post-assembly metalation to give a Pd-II-Au-III supra molecular assembly, c…

Mechanistic characterizationMetalationCavitySupramolecular chemistryQuímica organometàl·licaNanoreactor010402 general chemistry7. Clean energy01 natural sciencesBiochemistryCatalysisCoordination complexSupramolecular assemblyClustersQUIMICA ORGANICAColloid and Surface ChemistryOxidationPolyhedraConstructionchemistry.chemical_classificationChemistryCagesGeneral ChemistryCombinatorial chemistry0104 chemical sciencesEfficientAlkynesMetal-organic frameworkCatalystSelf-assemblySupramolecular catalysis
researchProduct

Front Cover Picture: SBA‐15/POSS‐Imidazolium Hybrid as Catalytic Nanoreactor: the role of the Support in the Stabilization of Palladium Species for C…

2019

C c couplingFront coverchemistryHeck reactionPolymer chemistrychemistry.chemical_elementGeneral ChemistryNanoreactorHeterogeneous catalysisCoupling reactionPalladiumCatalysisAdvanced Synthesis & Catalysis
researchProduct

Chemically Fueled Block Copolymer Self‐Assembly into Transient Nanoreactors**

2021

In chemically fueled supramolecular materials, molecular self-assembly is coupled to a fuel-driven chemical reaction cycle. The fuel-dependence makes the material dynamic and endows it with exciting properties like adaptivity and autonomy. In contrast to the large work on the self-assembly of small molecules, we herein designed a diblock copolymer, which self assembles into transient micelles when coupled to a fuel-driven chemical reaction cycle. Moreover, we used these transient block copolymer micelles to locally increase the concentration of hydrophobic reagents and thereby function as a transient nanoreactor.

Materials science010405 organic chemistryMechanical EngineeringSupramolecular chemistryEnergy Engineering and Power TechnologyNanoreactorManagement Science and Operations Research010402 general chemistry01 natural sciencesSmall moleculeChemical reactionMicelle0104 chemical sciencesChemical engineeringReagentCopolymerSelf-assemblyChemSystemsChem
researchProduct

Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors

2021

Abstract Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self‐assembling protein‐based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by design. Using single‐molecule Förster resonance energy transfer and 3D‐MINFLUX analysis, we analyze fluorescently labeled encapsulins on a single‐molecule basis. Furthermore, by equipping these capsules with a synthetic ruthenium catalyst via covalent attachment to a non‐native host protein, we are able to perform in vitro catalysis and go on to show that engineered encapsulins can be used …

Mycobacterium smegmatisHomogeneous catalysisNanotechnologyNanoreactor010402 general chemistrysingle-molecule FRET01 natural sciences7. Clean energyCatalysisCatalysis03 medical and health sciencesBacterial ProteinsFluorescence Resonance Energy TransferOrganometallic CompoundsParticle SizeResearch Articles030304 developmental biology0303 health sciencesChemistryencapsulinsGeneral Medicineself-assemblyGeneral ChemistrySingle-molecule FRETCompartmentalization (psychology)Bioorthogonal Chemistryhomogeneous catalysisNanostructures0104 chemical sciencesFörster resonance energy transferMicroscopy FluorescenceCovalent bondSelf-assemblyMINFLUXResearch ArticleAngewandte Chemie International Edition
researchProduct

Nanohydrogel Formation within the Halloysite Lumen for Triggered and Sustained Release

2018

An easy strategy to obtain nanohydrogels within the halloysite nanotube (HNTs) lumen was investigated. Inorganic reverse micelles based on HNTs and hexadecyltrimethylammonium bromides were dispersed in chloroform, and the hydrophilic cavity was used as a nanoreactor to confine the gel formation based on alginate cross-linked by calcium ions. Spectroscopy and electron microscopy experiments proved the confinement of the polymer into the HNT lumen and the formation of calcium-mediated networks. Biological tests proved the biocompatibility of the hybrid hydrogel. The nanogel in HNTs was suitable for drug loading and sustained release with the opportunity of triggered burst release by chemical …

NanotubeMaterials scienceBiocompatibilityChlorine compound02 engineering and technologyNanoreactorHexadecyl trimethyl ammonium bromideengineering.materialHybrid hydrogel010402 general chemistry01 natural sciencesMicelleHalloysiteSustained release Drug deliveryAdsorptionKaoliniteHalloysite nanotube (HNTs)Chemical stimuliGeneral Materials ScienceControlled drug deliveryBiological testSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationTargeted drug deliveryCrosslinkingReverse micellePolymer021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringchemistryYarn Biological applicationengineeringBiocompatibilityCalcium0210 nano-technologyMicelleNanogelACS Applied Materials & Interfaces
researchProduct

Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles

2015

Muhammad Ajaz Hussain,1 Abdullah Shah,1 Ibrahim Jantan,2 Muhammad Raza Shah,3 Muhammad Nawaz Tahir,4 Riaz Ahmad,5 Syed Nasir Abbas Bukhari2 1Department of Chemistry, University of Sargodha, Sargodha, Pakistan; 2Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia; 3International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; 4Institute of Inorganic and Analytical Chemistry, Johannes Guttenberg University, Duesbergweg, Mainz, Germany; 5Centre for Advanced Studies in Physics (CASP), GC University, Lahore, Pakistan Abstract: Polysaccharides are attracting the vigil eye of…

Staphylococcus aureusSilverMaterials scienceScanning electron microscopeDrug StorageBiophysicsMetal NanoparticlesPharmaceutical ScienceBioengineeringNanotechnologyNanoreactorMicroscopy Atomic Forcenanobiotechnologyantimicrobial assaySilver nanoparticlestorageBiomaterialsAnti-Infective AgentsMicroscopy Electron TransmissionX-Ray DiffractionInternational Journal of NanomedicinePhase (matter)Spectroscopy Fourier Transform InfraredDrug DiscoveryEscherichia coliStaphylococcus epidermidisThin filmCelluloseOriginal ResearchAqueous solutiongreen synthesisOrganic Chemistrytechnology industry and agricultureGreen Chemistry TechnologyGeneral MedicinestabilityTransmission electron microscopyPseudomonas aeruginosaMicroscopy Electron ScanningSunlightAspergillus nigernanoreactorAbsorption (chemistry)Bacillus subtilisNuclear chemistryInternational Journal of Nanomedicine
researchProduct

Amphiphilic Poly(organosiloxane) Nanospheres as Nanoreactors for the Synthesis of Topologically Trapped Gold, Silver, and Palladium Colloids

2003

Amphiphilic poly(organosiloxane) nanospheres with different core−shell architectures are employed as passive nanoreactors for the synthesis of noble metal colloids. The amphiphilic poly(organosiloxane) nanospheres, which have diameters between 15 and 40 nm, possess a hydrophilic interior and a hydrophobic shell. Dispersed in organic solvents such as toluene, it has been achieved to transfer hydrophilic noble metal salts through the solvent into the nanospheres by either liquid−liquid or solid−liquid phase transfer. Subsequently, reduction of the noble metal salt with lithium triethylborohydride led to the formation of 2−5 nm sized noble metal colloids. If the network density of the shell of…

Materials sciencePolymers and PlasticsOrganic ChemistryInorganic chemistrychemistry.chemical_elementNanoparticleNanoreactorengineering.materialInorganic ChemistrySolventColloidSilver nitratechemistry.chemical_compoundchemistryChemical engineeringAmphiphileMaterials ChemistryengineeringNoble metalPalladiumMacromolecules
researchProduct