Search results for "nanosensor"

showing 10 items of 33 documents

Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors

2008

GlycerolNanostructureMaterials scienceMolecular StructureTemperatureMetal NanoparticlesNanotechnologyGeneral ChemistryGeneral MedicineHydrogen-Ion ConcentrationCatalysisPolyelectrolyteElectrolytesMicroscopy Electron TransmissionColloidal goldNanosensorGoldMetal nanoparticlesAngewandte Chemie
researchProduct

Core–Shell Nanorod Columnar Array Combined with Gold Nanoplate–Nanosphere Assemblies Enable Powerful In Situ SERS Detection of Bacteria

2016

Development of a label-free ultrasensitive nanosensor for detection of bacteria is presented. Sensitive assay for Gram-positive bacteria was achieved via electrostatic attraction-guided plasmonic bifacial superstructure/bacteria/columnar array assembled in one step. Dynamic optical hotspots were formed in the hybridized nanoassembly under wet-dry critical state amplifying efficiently the weak vibrational modes of three representative food-borne Gram-positive bacteria, that is, Staphylococcus xylosus, Listeria monocytogenes, and Enterococcus faecium. These three bacteria with highly analogous Raman spectra can be effectively differentiated through droplet wet-dry critical SERS approach combi…

In situMaterials scienceGram-positive bacteriata221Nanotechnology02 engineering and technologySpectrum Analysis Raman010402 general chemistry01 natural sciencessymbols.namesakeNanosensorGeneral Materials Scienceta318PlasmonNanotubesbiology3D PCASERSStaphylococcus xylosusGram-positive bacteria021001 nanoscience & nanotechnologybiology.organism_classificationListeria monocytogenesnanoarray0104 chemical sciencessymbolsNanorodGoldsuperstructure0210 nano-technologyRaman spectroscopyNanospheresBacteriaACS Applied Materials and Interfaces
researchProduct

Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns

2020

Additional data to support our work on "Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns" published in the Journal of Physical Chemistry Letters (DOI: 10.1021/acs.jpclett.0c01400) Movies: - S1: MinVideo_EColi.mp4 - S2: MinVideo_DOPC_DOPG_CL.mp4 - S3: MinVideo_DOPC_DOPG.mp4 Audio Files: - S1: MinSound_EColi.mp4 - S2: MinSound_DOPC_DOPG_CL.mp4 - S3: MinSound_DOPC_DOPG.mp4

Label-free NanosensorsProtein PatternsMinDE OscillationsMolecular Imaging
researchProduct

Simulation of Fundamental Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems

2012

Cluster approach based on the multiple scattering theory formalism, realistic analytical and coherent potentials, as well as effective medium approximation (EMA-CPA), can be effectively used for nano-sized systems modeling. Major attention is paid now to applications of carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) with various morphology which possess unique physical properties in nanoelectronics, e.g., contacts of CNTs or (GNRs) with other conducting elements of a nanocircuit, which can be promising candidates for interconnects in high-speed electronics. The main problems solving for resistance C-Me junctions with metal particles appear due to the influence of chirality effects …

Liquid metalMaterials scienceNanoelectronicsNanosensorElectrical resistivity and conductivitylawDangling bondNanotechnologyScattering theoryCarbon nanotubeGraphene nanoribbonslaw.invention
researchProduct

Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns.

2020

We introduce a new approach to monitor the dynamics and spatial patterns of biological molecular assemblies. Our molecular imaging method relies on plasmonic gold nanoparticles as point-like detectors and requires no labeling of the molecules. We show spatial resolution of up to 5 μm and 30 ms temporal resolution, which is comparable to wide-field fluorescence microscopy, while requiring only readily available gold nanoparticles and a dark-field optical microscope. We demonstrate the method on MinDE proteins attaching to and detaching from lipid membranes of different composition for 24 h. We foresee our new imaging method as an indispensable tool in advanced molecular biology and biophysic…

Materials scienceCardiolipinsLipid BilayersMetal NanoparticlesNanotechnologyCell Cycle Proteins02 engineering and technology010402 general chemistry01 natural sciencesNanosensorFluorescence microscopeEscherichia coliGeneral Materials SciencePhysical and Theoretical ChemistryImage resolutionPlasmonAdenosine TriphosphatasesMicroscopyNanotubesEscherichia coli ProteinsPhosphatidylglycerols021001 nanoscience & nanotechnology0104 chemical sciencesMembraneColloidal goldTemporal resolutionPhosphatidylcholinesGoldMolecular imaging0210 nano-technologyThe journal of physical chemistry letters
researchProduct

Simulation of electromagnetic properties in carbon nanotubes and graphene-based nanostructures

2012

As carbon nanotubes (CNT) and graphene nanostructures (GNR) constitute the basis of high-speed nanoelectronics and nanosensors, we examine the fundamental properties of var- ious CNT-metal (Me), GNR-Me, and CNT-graphene interconnects. The cluster approach based on the multiple scattering theory as well as effective medium approximation were used to model the dispersion law, electronic density of states (DOS), and conductivity, etc. Multiple scattering problems were solved for nanostructures with radial (quantum dots) and axial (nanowires, nano- tubes) symmetry. Interconnect capacitances and impedances have been evaluated in the GHz and THz regimes. Parametrical numerical simulations of cond…

Materials scienceGraphenebusiness.industryNanowireMechanical properties of carbon nanotubesNanotechnologyCarbon nanotubeCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionNanoelectronicslawNanosensorQuantum dotNano-OptoelectronicsbusinessJournal of Nanophotonics
researchProduct

Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy

2018

Transparent upconverting hybrid nanocomposites are exciting materials for advanced applications such as 3D displays, nanosensors, solar energy converters, and fluorescence biomarkers. This work presents a simple strategy to disperse upconverting b-NaYF4:Yb3+/Er3+ or Tm3+ nanoparticles into low cost, widely used and easy-to-process polydimethylsiloxane (PDMS)-based organic–inorganic hybrids. The upconverting hybrids were shaped as monoliths, films or powders displaying in the whole volume Tm3+ or Er3+ emissions (in the violet/blue and green/red spectral regions, respectively). For the first time, hyperspectral microscopy allows the identification at the submicron scale of differences in the …

Materials scienceNanocompositePolydimethylsiloxaneGeneral EngineeringHyperspectral imagingNanoparticleBioengineeringNanotechnologyGeneral ChemistryFluorescenceAtomic and Molecular Physics and OpticsPhoton upconversionchemistry.chemical_compoundchemistryNanosensorMicroscopyGeneral Materials Science
researchProduct

Real time polymer nanocomposites-based physical nanosensors: theory and modeling.

2017

Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtain…

Materials scienceNanocompositePolymer nanocompositeMechanical EngineeringBioengineeringNanotechnologyGeneral ChemistryDielectricEpoxyCarbon nanotubeConductivity01 natural sciences010305 fluids & plasmaslaw.inventionMechanics of MaterialsNanosensorlawvisual_art0103 physical sciencesvisual_art.visual_art_mediumGeneral Materials ScienceElectrical and Electronic Engineering010306 general physicsGraphene nanoribbonsNanotechnology
researchProduct

Nanosensors and other techniques for detecting nanoparticles in the environment

2014

Abstract: Detecting nanomaterials in the environment is a demanding task, not only because of the extremely small size of the particles and their potential sequestration and agglomeration, but also because of their unique physical and chemical characteristics. The aim of this review is to recommend a way forward on tackling the challenge of engineered nanomaterial detection in the environment. An overview will be presented of the available analytical techniques used for the detection and characterization of nanoparticles in environmental matrices including particle-size analysis, particle-fraction concentration counts, surface-area analysis, morphology, and particle chemical composition ana…

Materials scienceNanosensorMicroscopyNanoparticleParticleNanotechnologySample preparationMass spectrometryNanomaterialsCharacterization (materials science)
researchProduct

Nanosensor Systems Simulations

2017

The chapter presents functionalized CNT and GNR nanostructures as the basis for the creation of physical, chemical and biochemical nanosensors. We have shown in our simulations the sensitivity of electron conductivity of FET-type nanodevices (based on CNTs and GNRs) to local doping by nitrogen and boron. This phenomenon provides the prospective of creating nanosensors.

Materials scienceNanostructurechemistryNanosensorDopingchemistry.chemical_elementNanotechnologyElectronSensitivity (control systems)ConductivityBoron
researchProduct