Search results for "nanostructures"
showing 10 items of 352 documents
Nanostructuring with a crosslinkable discotic material.
2007
A high-yielding synthesis afforded a hexa-peri-hexabenzocoronene carrying acrylate units at the end of six attached alkyl spacers. The polymerization of these acrylate moieties could be initiated with thermal energy and through direct photoactivation without the addition of a photoinitiator. This allowed the organization of the liquid-crystalline material to be fixed in either the crystalline state or the mesophase, which preserved the organization in the respective phase. The use of a focused synchrotron beam permitted selected regions of a thin film to be rendered insoluble. After "developing" the film in this lithographic process by dissolving the soluble, unpolymerized material, defined…
Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves.
2017
The magnetoelastic effect—the change of magnetic properties caused by the elastic deformation of a magnetic material—has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magne…
DNA origami as a nanoscale template for protein assembly
2009
We describe two general approaches to the utilization of DNA origami structures for the assembly of materials. In one approach, DNA origami is used as a prefabricated template for subsequent assembly of materials. In the other, materials are assembled simultaneously with the DNA origami, i.e. the DNA origami technique is used to drive the assembly of materials. Fabrication of complex protein structures is demonstrated by these two approaches. The latter approach has the potential to be extended to the assembly of multiple materials with single attachment chemistry.
Spray pyrolytic deposition of ZnO thin layers composed of low dimensional nanostructures
2010
Abstract ZnO nanolayers composed of fine nanostructures have been successively grown by spray pyrolytic deposition at 300 ∘ C over amorphous glass substrates. As deposited samples were analysed by scanning electron microscopy (SEM), showing a granular morphology with grain size in the limit of the microscope resolution. CL measurement shows a broad near band edge (3.4 eV) emission of ZnO in the UV region and the defect level emissions in the green region of the spectrum. The use of intermittent spray pyrolytic deposition is shown as an alternative to increase the homogeneity of the samples when temperatures near to the precursor pyrolytic decomposition is selected, long depositions times a…
Dispersions of Nanoclays of Different Shapes into Aqueous and Solid Biopolymeric Matrices. Extended Physicochemical Study
2010
Dispersions of nanofillers into aqueous and solid biopolymeric matrices were studied from the physicochemical viewpoint. This work was carried out based on the idea that the combination of biopolymers, derived from renewable resources, and nanofiller, environmentally friendly, may form a new generation of nanomaterials with excellent and unique properties at low cost. To this purpose, two pectins with different degrees of methyl esterification and nanoclays like halloysite and laponite RD were selected. The thermodynamic and structural studies on the aqueous mixtures of pectin and nanoclay were able to discriminate the interactions, which control the adsorption of pectin onto the filler and…
La 1−xCaxMnO3 semiconducting nanostructures: morphology and thermoelectric properties
2014
Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1−xCa x MnO3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has b…
Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study
2012
5 páginas, 8 figuras, 1 tabla.-- El pdf del artículo es el manuscrito de autor.
Atomically Precise Gold Nanoclusters: Towards an Optimal Biocompatible System from a Theoretical-Experimental Strategy.
2021
Potential biomedical applications of gold nanoparticles have increasingly been reported with great promise for diagnosis and therapy of several diseases. However, for such a versatile nanomaterial, the advantages and potential health risks need to be addressed carefully, as the available information about their toxicity is limited and inconsistent. Atomically precise gold nanoclusters (AuNCs) have emerged to overcome this challenge due to their unique features, such as superior stability, excellent biocompatibility, and efficient renal clearance. Remarkably, the elucidation of their structural and physicochemical properties provided by theory-experiment investigations offers exciting opport…
Domain wall transformations and hopping in La0.7Sr0.3MnO3nanostructures imaged with high resolution x-ray magnetic microscopy
2014
We investigate the effect of electric current pulse injection on domain walls in La(0.7)Sr(0.3)MnO(3) (LSMO) half-ring nanostructures by high resolution x-ray magnetic microscopy at room temperature. Due to the easily accessible Curie temperature of LSMO, we can employ reasonable current densities to induce the Joule heating necessary to observe effects such as hopping of the domain walls between different pinning sites and nucleation/annihilation events. Such effects are the dominant features close to the Curie temperature, while spin torque is found to play a small role close to room temperature. We are also able to observe thermally activated domain wall transformations and we find that,…
Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions
2016
In the present work, a new WO3 nanostructure has been obtained by anodization in a H2SO4/NaF electrolyte under controlled hydrodynamic conditions using a Rotating Disk Electrode (RDE) configuration. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FESEM), Confocal Raman Microscopy and photoelectrochemical measurements. The new nanostructure, which consists of nanoplatelets clusters growing in a tree-like manner, presents a very high surface area exposed to the electrolyte, leading to an outstanding enhancement of its photoelectrochemical activity. Obtained results show that the size of nanostructures and the percentage of electrode surface covered by…