Search results for "nanostructures"

showing 10 items of 352 documents

Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors

2021

Abstract Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self‐assembling protein‐based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by design. Using single‐molecule Förster resonance energy transfer and 3D‐MINFLUX analysis, we analyze fluorescently labeled encapsulins on a single‐molecule basis. Furthermore, by equipping these capsules with a synthetic ruthenium catalyst via covalent attachment to a non‐native host protein, we are able to perform in vitro catalysis and go on to show that engineered encapsulins can be used …

Mycobacterium smegmatisHomogeneous catalysisNanotechnologyNanoreactor010402 general chemistrysingle-molecule FRET01 natural sciences7. Clean energyCatalysisCatalysis03 medical and health sciencesBacterial ProteinsFluorescence Resonance Energy TransferOrganometallic CompoundsParticle SizeResearch Articles030304 developmental biology0303 health sciencesChemistryencapsulinsGeneral Medicineself-assemblyGeneral ChemistrySingle-molecule FRETCompartmentalization (psychology)Bioorthogonal Chemistryhomogeneous catalysisNanostructures0104 chemical sciencesFörster resonance energy transferMicroscopy FluorescenceCovalent bondSelf-assemblyMINFLUXResearch ArticleAngewandte Chemie International Edition
researchProduct

Memory cell structure integrated on semiconductor

2004

This invention relates to a memory cell Which comprises a capacitor having a ?rst electrode and a second electrode separated by a dielectric layer. Such dielectric layer com prises a layer of a semi-insulating material Which is fully enveloped by an insulating material and in Which an electric charge is permanently present or trapped therein. Such electric charge accumulated close to the ?rst or to the second electrode, depending on the electric ?eld betWeen the electrodes,therebyde?ningdifferentlogiclevels.

NULLMemory cellSi nanostructuresSilicon rich oxideSettore ING-INF/01 - ElettronicaCMOS technologynon volatile memories
researchProduct

Nanostructuring thin Au films on transparent conductive oxide substrates

2013

Fabrication processes of Au nanostructures on indium-tin-oxide (ITO) surface by simple, versatile, and low-cost bottom-up methodologies are investigated in this work. A first methodology exploits the patterning effects induced by nanosecond laser irradiations on thin Au films deposited on ITO surface. We show that after the laser irradiations, the Au film break-up into nanoclusters whose mean size and surface density are tunable by the laser fluence. A second methodology exploits, instead, the patterning effects of standard furnace thermal processes on the Au film deposited on the ITO. We observe, in this case, a peculiar shape evolution from pre-formed nanoclusters during the Au deposition…

NanoclusterLaser annealingMaterials scienceNanostructureFabricationNanoringPatterning effectGold depositAnnealing (metallurgy)NanotechnologyFluenceSettore ING-INF/01 - Elettronicalaw.inventionNanoclusterslawThermalDeposition stageAuGeneral Materials ScienceNanostructuringTransparent conducting filmDepositMechanical EngineeringNanoringsTransparent conductive oxides Conductive filmAnnealing temperatureCondensed Matter PhysicsLaserAu; ITO; NanostructuringFurnace annealingNanostructuresNanostructured materialFabrication proceMechanics of MaterialsOxide films GoldITO
researchProduct

Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons

2013

11 figures, 2 tables.-- © 2012. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

NanocubesMaterials scienceCatalytic total oxidationInorganic chemistryNanoparticlePolycyclic aromatic hydrocarbonCatalysischemistry.chemical_compoundsymbols.namesakeCeriaAdsorptionHydrothermal synthesisReactivity (chemistry)General Environmental ScienceNaphthalenechemistry.chemical_classificationNanotubesVOCProcess Chemistry and TechnologyMorphological diagramNanostructureschemistrysymbolsNanorodsNanorodRaman spectroscopyNaphthaleneApplied Catalysis B: Environmental
researchProduct

Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions

2011

We demonstrate the supramolecular bioconjugation of concanavalin A (Con A) protein with glycoenzyme horseradish peroxidase (HRP) inside single nanopores, fabricated in heavy ion tracked polymer membranes. Firstly, the HRP-enzyme was covalently immobilized on the inner wall of the pores using carbodiimide coupling chemistry. The immobilized HRP-enzyme molecules bear sugar (mannose) groups available for the binding of Con A protein. Secondly, the bioconjugation of Con A on the pore wall was achieved through its biospecific interactions with the mannose residues of the HRP enzyme. The immobilization of biomolecules inside the nanopore leads to the reduction of the available area for ionic tran…

NanometresSynthetic membraneTransport equationNanoporesInformation processingRectification propertiesCylinders (shapes)Materials TestingConcanavalin AGeneral Materials ScienceFunctional polymersConical nanoporeschemistry.chemical_classificationChemistryBlocking effectElectric rectifiersComputer simulationEnzymesData processingNanoporeEnzyme moleculesFunctional polymersMolecular imprintingPorosityBio-molecularInner wallsMolecular imprintingSupramolecular chemistryNanotechnologyHorseradish peroxidaseIonic transportsNanocapsulesBio-conjugationMoleculeParticle SizeAqueous solutionsGlycoproteinsBiomoleculesBioconjugationBiomoleculeNanostructuresModel simulationChemical engineeringModels ChemicalPolymer membraneConductance stateFISICA APLICADABiospecific interactionSynthetic polymersSugarsSupramolecular chemistryPore wallCarbodiimide-coupling chemistry
researchProduct

Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization.

2012

We present an experimental and theoretical characterization of single cigar-shaped nanopores with pH-responsive carboxylic acid and lysine chains functionalized on the pore surface. The nanopore characterization includes (i) optical images of the nanostructure obtained by FESEM; (ii) different chemical procedures for the nanopore preparation (etching time and functionalizations; pH and electrolyte concentration of the external solution) allowing externally tunable nanopore responses monitored by the current-voltage (I-V) curves; and (iii) transport simulations obtained with a multilayer nanopore model. We show that a single, approximately symmetric nanopore can be operated as a reconfigurab…

NanoporeRe-configurablePHAmino acid chainsEtching timeElectrical signalCarboxylic AcidsGeneral Physics and AstronomyFunctionalizationsElectrolytePore surfaceElectrochemistryFunctionalizedCarboxylic acidOptical imageNanoporesElectric conductivityI - V curveElectrochemistryGeneral Materials ScienceTheoretical modelRectifying behaviorsFundamental conceptsRectifying propertiesSurface propertyGeneral EngineeringHydrogen-Ion ConcentrationCigar-shaped nanoporeCharacterization (materials science)Data processingChemistryNanoporeAmino acidsIon channelTransport simulationIodineLogic functionsNanostructureMaterials scienceLogicSurface PropertiesCharacterizationNanotechnologyTunabilitiesArticleDrug controlled releaseElectrical resistivity and conductivityEtchingTransport processPH-responsiveCurrent voltage curveDiodeChemical proceduresCarboxylic acidsLysineElectric ConductivityModels TheoreticalGeometrical opticsNanostructuresAmphoteric amino acid chainsCurrent-voltage curvesExternal solutionsFISICA APLICADAElectrolyte concentrationACS nano
researchProduct

Customized WO3 nanoplatelets as visible-light photoelectrocatalyst for the degradation of a recalcitrant model organic compound (methyl orange)

2018

[EN] WO3 nanoplatelets have been synthesized by electrochemical anodization in acidic electrolytes containing two different complexing agents: fluorides and hydrogen peroxide. The influence of the morphology and size of these nanoplatelets on their photoelectrocatalytic performance has been studied following the degradation of a model organic recalcitrant compound, such as methyl orange (MO). The effect of several supporting electrolytes on this photodegradation process has also been checked. The best MO decoloration was observed for nanoplatelets fabricated in the presence of low H2O2 concentrations, whose distribution and small size made them expose a very high surface area to the problem…

NanostructureComplexing agentsGeneral Chemical EngineeringGeneral Physics and Astronomy02 engineering and technologyElectrolyte010402 general chemistry01 natural sciencesOrganic compoundINGENIERIA QUIMICAchemistry.chemical_compoundMethyl orangeHydrogen peroxidePhotodegradationchemistry.chemical_classificationNanoestructuresAnodizingGeneral Chemistry021001 nanoscience & nanotechnologyWO3 nanostructures0104 chemical sciencesElectroquímicachemistryChemical engineeringMethyl orangePhotoelectrocatalysisAnodization0210 nano-technologyVisible spectrum
researchProduct

Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

2016

The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered,…

NanostructureDopamineOxidetransition metal dichalcogenides; transducers; beyond graphene; biosensors; two-dimensional materials; two-dimensional oxides; transition metal oxidesNanotechnologyReviewBiosensing Techniques02 engineering and technology010402 general chemistrylcsh:Chemical technology01 natural sciencesBiochemistryAnalytical Chemistrylaw.inventionchemistry.chemical_compoundlawtransducerslcsh:TP1-1185transition metal oxidesElectrical and Electronic Engineeringtwo-dimensional materialsInstrumentationMaterial synthesisChemistryGraphenetransition metal dichalcogenidesOxidesDNAKemi021001 nanoscience & nanotechnologyAscorbic acidbiosensorsAtomic and Molecular Physics and OpticsNanostructures0104 chemical sciencestwo-dimensional oxidesbeyond grapheneGlucoseChemical SciencesGraphiteDirect and indirect band gaps0210 nano-technologyBiosensor
researchProduct

Toward mass producible ordered bulk heterojunction organic photovoltaic devices.

2012

A strategy to fabricate nanostructured poly(3-hexylthiophene) (P3HT) films for organic photovoltaic (OPV) cells by a direct transfer method from a reusable soft replica mold is presented. The flexible polyfluoropolyether (PFPE) replica mold allows low-pressure and low- temperature process condition for the successful transfer of nanostructured P3HT films onto PEDOT/PSS-coated ITO substrates. To reduce the fabrication cost of masters in large area, we employed well-ordered anodic aluminum oxide (AAO) as a template. Also, we provide a method to fabricate reversed nanostructures by exploiting the self-replication of replica molds. The concept of the transfer method in low temperature with a fl…

NanostructureFabricationMaterials sciencePolymers and PlasticsOrganic solar cellPhotochemistryReplicaOrganic ChemistryNanotechnologyEquipment DesignThiophenesmedicine.disease_causePolymer solar cellNanostructuresPEDOT:PSSMoldMaterials TestingMaterials ChemistrymedicineAluminum OxideElectrodesNanopillarMacromolecular rapid communications
researchProduct

Organophosphorus pesticides (chlorfenvinphos, phosmet and fenamiphos) photoelectrodegradation by using WO3 nanostructures as photoanode

2021

[EN] The photoelectrocatalytic (PEC) degradation of recalcitrant and toxic organophosphorus pesticides, fenamiphos, chlorfenvinphos and phosmet, has been performed by using an innovative WO3 nanostructure as photoanode. The nanostructure has been synthesized by anodization in acidic media in the presence of a very small amount (0.05 M) of H2O2, and its composition as well as its photoelectrochemical properties have been characterized using X-ray Photoelectron Spectroscopy and X-ray diffraction as composition technique and photoelectrochemical impedance spectroscopy as photoelectrochemical analysis. After 24 h of experiment, a degradation of 95% of chlorfenvinphos, 99.9% of phosmet and 100% …

NanostructureGeneral Chemical EngineeringKinetics02 engineering and technology010402 general chemistry01 natural sciencesINGENIERIA QUIMICAAnalytical Chemistrychemistry.chemical_compoundDegradationX-ray photoelectron spectroscopyElectrochemistryPesticidesUHPLC-Q-TOF/MSChlorfenvinphosPhosmet021001 nanoscience & nanotechnologyWO3 nanostructures0104 chemical sciencesDielectric spectroscopychemistryDegradation (geology)Photoelectrocatalysis0210 nano-technologyFenamiphosNuclear chemistry
researchProduct