Search results for "nervous-system"

showing 10 items of 14 documents

Central Serotonin2C Receptor: From Physiology to Pathology

2006

Since the 1950s, when serotonin (5-HT) was discovered in the mammalian central nervous system (CNS), an enormous amount of experimental evidence has revealed the pivotal role of this biogenic amine in a number of cognitive and behavioural functions. Although 5-HT is synthesized by a small group of neurons within the raphe nuclei of the brain stem, almost all parts of the CNS receive serotonergic projections. Furthermore, the importance of 5-HT modulation and the fine-tuning of its action is underlined by the large number of 5-HT binding sites found in the CNS. Hitherto, up to 15 different 5-HT receptors subtypes have been identified. This review was undertaken to summarize the work that has…

SerotoninDORSAL RAPHE NUCLEUSPathologymedicine.medical_specialtyProtein ConformationCentral nervous systemPhysiologyRAT NUCLEUS-ACCUMBENSBiologySerotonergicDorsal raphe nucleusPLEXUS EPITHELIAL-CELLSAGONIST-DIRECTED TRAFFICKINGDrug DiscoveryReceptor Serotonin 5-HT2CmedicineAnimalsHumansserotonergic receptorselective 5-HT2C drugs Key Words Plus: VENTRAL TEGMENTAL AREAReceptor5-HT receptorReceptor Serotonin 5-HTCENTRAL-NERVOUS-SYSTEMGeneral MedicineEXTRACELLULAR DOPAMINE LEVELSmedicine.diseaseschizophreniamedicine.anatomical_structureGene Expression RegulationDepression Mentaldrug of abuse5-HT2 ANTAGONIST RITANSERINSchizophreniadepressionSchizophreniaATYPICAL ANTIPSYCHOTIC-DRUGSSerotoninRaphe nucleiPRIMATE CEREBRAL-CORTEXSignal TransductionCurrent Topics in Medicinal Chemistry
researchProduct

Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus.

2010

SummaryNeural stem cells (NSCs) in the adult hippocampus divide infrequently, and the molecules that modulate their quiescence are largely unknown. Here, we show that bone morphogenetic protein (BMP) signaling is active in hippocampal NSCs, downstream of BMPR-IA. BMPs reversibly diminish proliferation of cultured NSCs while maintaining their undifferentiated state. In vivo, acute blockade of BMP signaling in the hippocampus by intracerebral infusion of Noggin first recruits quiescent NSCs into the cycle and increases neurogenesis; subsequently, it leads to decreased stem cell division and depletion of precursors and newborn neurons. Consistently, selective ablation of Bmpr1a in hippocampal …

medicine.medical_specialtyanimal structuresGenetic VectorsHippocampal formationBiologyBone morphogenetic proteinHippocampusModels BiologicalMOLNEUROCell LineMiceNeural Stem CellsInternal medicineGeneticsmedicineAnimalsHumansNogginBone Morphogenetic Protein Receptors Type ICells Culturedreproductive and urinary physiologySmad4 ProteinNeuronsReverse Transcriptase Polymerase Chain ReactionStem CellsCell CycleLentivirusNeurogenesisCentral-nervous-system; Bone morphogenetic protein; Dentate gyrus; Progenitor cells; Neurogenesis; Expression; Receptor; Noggin; Brain; DifferentiationCell BiologyFlow CytometrySTEMCELLRats Inbred F344BMPR1ANeural stem cellRatsCell biologyEndocrinologyStem cell divisionnervous systemembryonic structuresMolecular MedicineStem cellbiological phenomena cell phenomena and immunityCarrier ProteinsSignal Transduction
researchProduct

Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons

2014

Novel hypotheses suggest that antidepressants, such as the selective serotonin reuptake inhibitor fluoxetine, induce neuronal structural plasticity, resembling that of the juvenile brain, although the underlying mechanisms of this reopening of the critical periods still remain unclear. However, recent studies suggest that inhibitory networks play an important role in this structural plasticity induced by fluoxetine. For this reason we have analysed the effects of a chronic fluoxetine treatment in the hippocampus and medial prefrontal cortex (mPFC) of transgenic mice displaying eGFP labelled interneurons. We have found an increase in the expression of molecules related to critical period pla…

MalePERINEURONAL NET EXPRESSIONTime FactorsDendritic spinePSA-NCAMCritical period plasticityHippocampusCell CountADULT BRAIN PLASTICITYTREATMENT INCREASESHippocampusMice0302 clinical medicinePharmacology (medical)Prefrontal cortexCerebral Cortex0303 health sciencesNeuronal PlasticitybiologyGlutamate DecarboxylaseMEDIAL PREFRONTAL CORTEXPOLYSIALIC ACIDmusculoskeletal neural and ocular physiologyPerineuronal net3. Good healthPsychiatry and Mental healthParvalbuminsmedicine.anatomical_structureCerebral cortexCELL-ADHESION MOLECULEAntidepressive Agents Second-GenerationDendritic SpinesGreen Fluorescent ProteinseducationMice TransgenicNerve Tissue ProteinsNeural Cell Adhesion Molecule L1Inhibitory postsynaptic potentialRAT HIPPOCAMPUS03 medical and health sciencesmedicineAnimalsPSA-NCAM EXPRESSION030304 developmental biologyPharmacologyperineuronal netsinterneuronsCENTRAL-NERVOUS-SYSTEMfluoxetine3112 NeurosciencesGene Expression Regulationnervous systemVesicular Glutamate Transport Protein 1Sialic Acidsbiology.proteinNeural cell adhesion moleculeNerve NetNeuroscience030217 neurology & neurosurgeryParvalbuminThe International Journal of Neuropsychopharmacology
researchProduct

Impact of 7-Ketocholesterol and Very Long Chain Fatty Acids on Oligodendrocyte Lipid Membrane Organization: Evaluation Via LAURDAN and FAMIS Spectral…

2011

International audience; In the context of multiple sclerosis and X-linked adrenoleukodystrophy, 7-ketocholesterol (7KC) and very long chain fatty acids (C24:0, C26:0) are supposed to induce side effects respectively on oligodendrocytes which are myelin (which is a lipoproteic complex) synthesizing cells. The effects of 7KC (25, 50 mu M), C24:0 and C26:0 (10, 20 mu M) on cell viability and lipid membrane organization were investigated on 158N murine oligodendrocytes. Concerning 7KC and fatty acids (at 20 mu M only):1) cell growth was strongly inhibited; 2) marked induction of cell death was revealed with propidium iodide (PI); 3) no apoptotic cells were found with C24:0 and C26:0 (absence of…

MaleMYELINlaw.inventionchemistry.chemical_compoundMice0302 clinical medicinelawFAMIS2-Naphthylamine[SDV.IDA]Life Sciences [q-bio]/Food engineeringEnzyme InhibitorsLipid bilayerKetocholesterols0303 health sciencesMicroscopy ConfocalOXYSTEROLSFatty AcidsMULTIPLE-SCLEROSISvery long chain fatty acidsCell biologyPEROXISOMAL DISORDERSAPOPTOSISOligodendrogliaX-LINKED ADRENOLEUKODYSTROPHYmedicine.anatomical_structureMembraneCHOLESTEROL OXIDESlipids (amino acids peptides and proteins)Laurdanalpha-CyclodextrinsHistologyContext (language use)BiologyMETABOLISMPathology and Forensic Medicine158N oligodendrocytes03 medical and health sciencesMembrane LipidsConfocal microscopymedicineAnimals[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringViability assayPropidium iodideLAURDAN7-ketocholesterol030304 developmental biologyFluorescent DyesCell MembraneCENTRAL-NERVOUS-SYSTEMCell BiologyOligodendrocytechemistryCELLSmono-photon confocal microscopy030217 neurology & neurosurgeryLaurates
researchProduct

Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: experimental and clinical aspects

2004

The advent of psychotherapeutic drugs has enabled management of mental illness and other neurological problems such as epilepsy in the general population, without requiring hospitalization. The success of these drugs in controlling symptoms has led to their widespread use in the vulnerable population of pregnant women as well, where the potential embryotoxicity of the drugs has to be weighed against the potential problems of the maternal neurological state. This review focuses on the developmental toxicity and neurotoxicity of five broad categories of widely available psychotherapeutic drugs: the neuroleptics, the antiepileptics, the antidepressants, the anxiolytics and mood stabilizers, an…

Drugmedicine.medical_specialtymedia_common.quotation_subjectPopulationDevelopmental toxicityserotonin-reuptake inhibitorsEpilepsyNeurochemicalmedicineAnimalsHumansprenatal phenytoin exposurePsychiatryeducationbeta-adrenergic-receptorsmedia_commonPharmacologyrat-brain developmentPsychotropic Drugseducation.field_of_studybusiness.industryMental DisordersNeurotoxicityBrainbeta-adrenergic-receptors; central-nervous-system; cerebellar granule cells; developing cerebral-cortex; fetal hydantoin syndrome; messenger-rna expression; prenatal phenytoin exposure; rat-brain development; serotonin-reuptake inhibitors; st-johns-wortmedicine.diseaseMental illnessdeveloping cerebral-cortexmessenger-rna expressionMoodcerebellar granule cellsMolecular Medicinecentral-nervous-systemPlant Preparationsst-johns-wortfetal hydantoin syndromebusiness
researchProduct

Mast cells' involvement in inflammation pathways linked to depression: evidence in mastocytosis

2016

International audience; Converging sources of evidence point to a role for inflammation in the development of depression, fatigue and cognitive dysfunction. More precisely, the tryptophan (TRP) catabolism is thought to play a major role in inflammation-induced depression. Mastocytosis is a rare disease in which chronic symptoms, including depression, are related to mast cell accumulation and activation. Our objectives were to study the correlations between neuropsychiatric features and the TRP catabolism pathway in mastocytosis in order to demonstrate mast cells' potential involvement in inflammation-induced depression. Fifty-four patients with mastocytosis and a mean age of 50.1 years were…

Male0301 basic medicine[SHS.PSY]Humanities and Social Sciences/PsychologyKynurenic Acidchemistry.chemical_compound0302 clinical medicineKynurenic acidMast CellsIndoleamine 23-dioxygenaseAcute stressQuinolinic acidKynurenineDepression (differential diagnoses)DepressionTryptophanMiddle AgedMast cellRat-brain3. Good healthPsychiatry and Mental healthmedicine.anatomical_structure[ SCCO.NEUR ] Cognitive science/NeuroscienceFemalemedicine.symptomMastocytosisSerotoninmedicine.medical_specialtyInflammationAryl-hydrocarbon receptorCentral-nervous-system[ SHS.PSY ] Humanities and Social Sciences/Psychology03 medical and health sciencesCellular and Molecular NeuroscienceInternal medicinemedicineHumansIndoleamine-Pyrrole 23-Dioxygenase[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular BiologyInflammationPsychiatric Status Rating ScalesDepressive Disorder Majorbusiness.industry[SCCO.NEUR]Cognitive science/NeuroscienceBeck Depression InventoryInterferon-alphaMammalian brain030104 developmental biologyEndocrinologyImmune-systemchemistryImmunologyIndoleamine 2?3-dioxygenasebusinessStress Psychological030217 neurology & neurosurgeryKynurenineQuinolinic acid
researchProduct

Evidence for hypothalamic ketone bodies sensing: impact on food intake and peripheral metabolic responses in mice

2016

Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain keton…

Blood GlucoseMale0301 basic medicineobesitynervous-systemPhysiology[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEndocrinology Diabetes and MetabolismKetone BodiesEnergy homeostasisEatingMicebodiesHomeostasisGlucose homeostasisoxidative stressAgouti-Related ProteinNeuropeptide YPhosphorylationmonocarboxylate transporters2. Zero hunger[ SDV.MHEP.PHY ] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]fat massHypothalamusKetone bodiesStarvation responseketogenic mediterranean dietweight-lossmedicine.medical_specialtybeta-hydroxybutyrateHypothalamusBiologyDiet High-Fat03 medical and health sciencesInsulin resistancerat-brainPhysiology (medical)Internal medicinemedicine[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]Animalsglucose homeostasisAdenylate Kinase/metabolism; Agouti-Related Protein/metabolism; Animals; Blood Glucose; Diet High-Fat; Eating/drug effects; Eating/physiology; Energy Metabolism/drug effects; Energy Metabolism/physiology; Gluconeogenesis/drug effects; Gluconeogenesis/physiology; Homeostasis; Hypothalamus/drug effects; Hypothalamus/metabolism; Insulin Resistance/physiology; Ketone Bodies/pharmacology; Male; Mice; Mice Inbred C57BL; Neuropeptide Y/metabolism; Phosphorylation/drug effectsenergy homeostasisAdenylate KinaseGluconeogenesismedicine.diseaseMice Inbred C57BL030104 developmental biologyEndocrinologyGluconeogenesislow-carbohydrateInsulin ResistanceEnergy Metabolism[SDV.AEN]Life Sciences [q-bio]/Food and NutritionHomeostasis
researchProduct

A novel microglial subset plays a key role in myelinogenesis in developing brain.

2017

Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here, we show that in contrast to healthy adult and inflammation-activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c(+) microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration, and differentiation. These cells are the major source of insulin-like growth factor 1, and its selective depletion from CD11c(+) microglia leads to impa…

0301 basic medicineAgingmedicine.medical_treatmentNews & ViewsInsulin-Like Growth Factor IMyelin SheathCell AggregationNeural PlateMicrogliaACTIVATED MICROGLIAGeneral NeuroscienceExperimental autoimmune encephalomyelitisNeurogenesisIGF1BrainGene Expression Regulation DevelopmentalADULT BRAINUp-RegulationALZHEIMERS-DISEASEmedicine.anatomical_structureEXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITISMyelinogenesisGROWTHFemaleMicrogliaCNSEncephalomyelitis Autoimmune ExperimentalNeurogenesisCentral nervous systemCD11cBiologyGeneral Biochemistry Genetics and Molecular BiologyDEPENDENT MANNER03 medical and health sciencesmedicinePOSTNATAL-DEVELOPMENTAnimalsMolecular BiologyNeuroinflammationGeneral Immunology and MicrobiologyCD11cGrowth factorGene Expression ProfilingCENTRAL-NERVOUS-SYSTEMmedicine.diseaseGALECTIN-1CD11c AntigenMice Inbred C57BL030104 developmental biologynervous systemAnimals NewbornImmunologymyelinogenesisNeuroscienceBiomarkersThe EMBO journal
researchProduct

Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth

2010

AbstractBackgroundThe antenno-maxilary complex (AMC) forms the chemosensory system of theDrosophilalarva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1,V1), presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS) were affected. Our earlier reports on larval AMC did not argue in favour of a role ofprosin cell fate decision, but strongly suggested thatproscould be involved in the control of other aspect of neuronal development. In order to identify these fu…

Central Nervous SystemMESH : Transcription FactorsMESH: DrosophilaOF-FUNCTION SCREEN;MUSCA-DOMESTICA L;HOUSE-FLY LARVA;FINE-STRUCTURE;AXON GUIDANCE;TRANSCRIPTION FACTOR;PATTERN-FORMATION;GENETIC-ANALYSIS;NERVOUS-SYSTEMGenes InsectMESH: Genes InsectAXON GUIDANCEMUSCA-DOMESTICA L0302 clinical medicineMESH: Gene Expression Regulation DevelopmentalCluster AnalysisDrosophila ProteinsMESH: AnimalsTRANSCRIPTION FACTORMESH: Nerve Tissue ProteinsMESH : Nerve Tissue ProteinsOF-FUNCTION SCREENOligonucleotide Array Sequence AnalysisGenetics0303 health sciencesMESH : Central Nervous SystemMicrobiology and ParasitologyMESH : Genes InsectGene Expression Regulation DevelopmentalNuclear ProteinsMESH: Transcription FactorsNull alleleMicrobiologie et ParasitologieMESH : Oligonucleotide Array Sequence Analysis[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Larva[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]DrosophilaDrosophila ProteinResearch ArticleBiotechnologylcsh:QH426-470MESH: Drosophila Proteinslcsh:BiotechnologyNerve Tissue ProteinsBiotechnologiesBiology03 medical and health sciencesMESH: Gene Expression ProfilingGENETIC-ANALYSIS[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]lcsh:TP248.13-248.65GeneticsAnimalsMESH : Cluster AnalysisMESH: Central Nervous SystemAlleleMESH : DrosophilaAlleles030304 developmental biologyMESH : LarvaMicroarray analysis techniquesHOUSE-FLY LARVAGene Expression ProfilingMESH : Gene Expression ProfilingMESH: AllelesWild typeMESH : Nuclear ProteinsProsperobiology.organism_classificationMESH : Drosophila ProteinsMESH: Cluster AnalysisNERVOUS-SYSTEMGene expression profilinglcsh:GeneticsMESH: Oligonucleotide Array Sequence AnalysisHomeoboxMESH : AnimalsMESH : Gene Expression Regulation DevelopmentalMESH : AllelesMESH: Nuclear ProteinsMESH: Larva030217 neurology & neurosurgeryTranscription FactorsPATTERN-FORMATIONFINE-STRUCTURE
researchProduct

Intracerebral Borna Disease Virus Infection of Bank Voles Leading to Peripheral Spread and Reverse Transcription of Viral RNA

2011

Bornaviruses, which chronically infect many species, can cause severe neurological diseases in some animal species; their association with human neuropsychiatric disorders is, however, debatable. The epidemiology of Borna disease virus (BDV), as for other members of the family Bornaviridae, is largely unknown, although evidence exists for a reservoir in small mammals, for example bank voles (Myodes glareolus). In addition to the current exogenous infections and despite the fact that bornaviruses have an RNA genome, bornavirus sequences integrated into the genomes of several vertebrates millions of years ago. Our hypothesis is that the bank vole, a common wild rodent species in traditional B…

Disease reservoirviruksetEpidemiologyanimal diseasesvirusesVeterinary MicrobiologyUrineVirus ReplicationMOUSE413 Veterinary sciencePolymerase Chain ReactionFecesInfectious Diseases of the Nervous SystemZoonosesBRAINBorna disease virusAntigens Viralbornavirus0303 health sciencesBorna diseaseMultidisciplinarybiologyArvicolinaeZoonotic DiseasesQR3. Good healthBank voleInfectious DiseasesBorna Virus InfectionVeterinary DiseasesArvicolinaeMedical MicrobiologyWILD RODENTSRNA ViralMedicineViral VectorsVeterinary PathologyResearch ArticleEXPRESSIONNeurovirulenceScienceUrinary BladdereducationANTIGENMicrobiologyVector BiologyInfectious Disease EpidemiologyVirusRATSPERSISTENT03 medical and health sciencesVirologyPeripheral Nervous SystemAnimalsHumansViral Nucleic AcidViral sheddingBiologyDisease Reservoirs030304 developmental biology030306 microbiologySTRAINSCENTRAL-NERVOUS-SYSTEMReproducibility of ResultsReverse TranscriptionVeterinary Virologybiology.organism_classificationVirologyViral ReplicationReverse transcriptaseMODELAnimals NewbornViral replicationBorna DiseaseAntibody FormationDNA ViralVeterinary ScienceViral Transmission and InfectionPLoS ONE
researchProduct