Search results for "nicotinamide"
showing 6 items of 76 documents
Electrochemical and bioelectrocatalytical properties of novel block-copolymers containing interacting ferrocenyl units
2008
The electrochemical characterization of three different polystyrene-b-polybutadiene block-copolymers, functionalized with diferrocenylsilane units, is reported. The PB-blocks have been functionalized with different fractions of electronicall y communicated, PSm-PB„ p (HSiMeFc2)p units, where m = 615, n = 53, p = 39 (1), m = 375, n = 92, p = 76 (2) and m = 455, n = 204, p = 170 (3). Electrochemical character ization has been carried out both in solution and after electrochemical deposition onto platinum electrodes. The bioelectrocatalytical properties of electrodes modified with the polymers in the nicotinamide dinucleotide (NADH) and glucose oxidase (GOx) oxidations have been investigated …
N,1-Bis(4-ethoxyphenyl)-2,6-dimethyl-4-oxo-1,4-dihydropyridine-3-carboxamide
2018
Condensation of ethyl acetoacetate and phenetidine gives the title compound, C24H26N2O4. The planar ethoxyphenyl group attached to the pyridine ring is twisted about 77.96 (11)° out of the plane of the N-ethoxycarboxamidopyridine unit. The carboxamide unit forms a dihedral angle of about 28.1 (2)° with the pyridine ring.
Synergistic Anticancer Therapy by Ovalbumin Encapsulation-Enabled Tandem Reactive Oxygen Species Generation
2020
Abstract The anticancer efficacy of photodynamic therapy (PDT) is limited due to the hypoxic features of solid tumors. We report synergistic PDT/chemotherapy with integrated tandem Fenton reactions mediated by ovalbumin encapsulation for improved in vivo anticancer therapy via an enhanced reactive oxygen species (ROS) generation mechanism. O2 .− produced by the PDT is converted to H2O2 by superoxide dismutase, followed by the transformation of H2O2 to the highly toxic .OH via Fenton reactions by Fe2+ originating from the dissolution of co‐loaded Fe3O4 nanoparticles. The PDT process further facilitates the endosomal/lysosomal escape of the active agents and enhances their intracellular deliv…
Endothelial nitric oxide synthase in vascular disease: from marvel to menace.
2006
Nitric oxide (NO·) is an important protective molecule in the vasculature, and endothelial NO· synthase (eNOS) is responsible for most of the vascular NO· produced. A functional eNOS oxidizes its substrate l -arginine to l -citrulline and NO·. This normal function of eNOS requires dimerization of the enzyme, the presence of the substrate l -arginine, and the essential cofactor (6 R )-5,6,7,8-tetrahydro- l -biopterin (BH 4 ), one of the most potent naturally occurring reducing agents. Cardiovascular risk factors such as hypertension, hypercholesterolemia, diabetes mellitus, or chronic smoking stimulate the production of reactive oxygen species in the vascular wall. Nicotinamide adenine dinu…
Sirolimus-Induced Vascular Dysfunction
2008
Objectives This study sought to analyze mechanisms that mediate vascular dysfunction induced by sirolimus. Background Despite excellent antirestenotic capacity, sirolimus-eluting stents have been found to trigger coronary endothelial dysfunction and impaired re-endothelialization. Methods To mimic the continuous sirolimus exposure of a stented vessel, Wistar rats underwent drug infusion with an osmotic pump for 7 days. Results Sirolimus treatment caused a marked degree of endothelial dysfunction as well as a desensitization of the vasculature to the endothelium-independent vasodilator nitroglycerin. Also, sirolimus stimulated intense transmural superoxide formation as detected by dihydroeth…
Aerobic Exercise During Advance Stage of Uncontrolled Arterial Hypertension
2021
Made available in DSpace on 2022-04-29T08:45:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2021-06-03 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Universidade Estadual Paulista Aim: To evaluate the influence of physical training on myocardial function, oxidative stress, energy metabolism, and MAPKs and NF-κB signaling pathways in spontaneously hypertensive rats (SHR), at advanced stage of arterial hypertension, which precedes heart failure development. Methods: We studied four experimental groups: normotensive Wistar rats (W, n = 27), trained W (W-EX, n = 31), SHR (n = 27), and exercised SHR (SHR-E…