Search results for "nucl-ex"

showing 10 items of 1009 documents

Deformation and mixing of coexisting shapes in neutron-deficient polonium isotopes

2015

Coulomb-excitation experiments are performed with postaccelerated beams of neutron-deficient Po196,198,200,202 isotopes at the REX-ISOLDE facility. A set of matrix elements, coupling the low-lying states in these isotopes, is extracted. In the two heaviest isotopes, Po200,202, the transitional and diagonal matrix elements of the 2+1 state are determined. In Po196,198 multistep Coulomb excitation is observed, populating the 4+1,0+2, and 2+2 states. The experimental results are compared to the results from the measurement of mean-square charge radii in polonium isotopes, confirming the onset of deformation from Po196 onwards. Three model descriptions are used to compare to the data. Calculati…

CHARGE RADIINuclear and High Energy PhysicsTRANSITION-PROBABILITYchemistry.chemical_elementCoulomb excitation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciences114 Physical sciencessymbols.namesakeMatrix (mathematics)NUCLEAR-DATA SHEETSCOULOMB-EXCITATION0103 physical sciencesSTATE PROPERTIESNuclear Physics - ExperimentNeutronfysiikka010306 general physicsEVEN-EVEN NUCLIDESMixing (physics)isotopesPoloniumINTRUDER STATESGAMMA-RAY SPECTROSCOPYPhysicsSPIN STATESisotoopitPO ISOTOPESIsotopeta114010308 nuclear & particles physicsBohr modelchemistryPhysics and AstronomysymbolsAtomic physicsInteracting boson modelphysicspolonium25.70.De 23.20.Js 25.60.−t 27.80.+w
researchProduct

Perspectives for CNO neutrino detection in Borexino

2018

International audience; Borexino measured with unprecedented accuracy the fluxes of solar neutrinos emitted at all the steps of the pp fusion chain. Still missing is the measurement of the flux of neutrinos produced in the CNO cycle. A positive measurement of the CNO neutrino flux is of fundamental importance for understanding the evolution of stars and addressing the unresolved controversy on the solar abundances. The measurement of the CNO neutrino flux in Borexino is challenging because of the low intensity of this component (CNO cycle accounts for about 1% of the energy emitted by Sun), the lack of prominent spectral features and the presence of background sources. The main background c…

CNO cycleexperimental methodsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomenascintillation counter: liquidSolar neutrinosbismuth: admixtureAstrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energySolar neutrinoCNO-cycleneutrino: fluxAstrophysics::Solar and Stellar Astrophysics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Stellar evolutionBorexinoliquid scintillatorAstrophysics::Galaxy AstrophysicsPhysicsEnergy distributiondetectorbackgroundbismuth: nuclideCNO cycleNeutrino detector13. Climate actionBorexinoExperimental methodsNeutrino
researchProduct

Searching for New Physics in two-neutrino double beta decay with CUPID

2021

Abstract In the past few years, attention has been drawn to the fact that a precision analysis of two-neutrino double beta decay (2υββ) allows the study of interesting physics cases like the emission of Majoron bosons and possible Lorentz symmetry violation. These processes modify the summed-energy distribution of the two electrons emitted in 2υββ. CUPID is a next-generation experiment aiming to exploit 100Mo-enriched scintillating Li2MoO4 crystals, operating as cryogenic calorimeters. Given the relatively fast half-life of 100Mo 2υββ and the large exposure that can be reached by CUPID, we expect to measure with very high precision the 100Mo 2υββ spectrum shape, reaching great sensitivities…

CUPID Neutrinoless Double Beta Decay LNGS Particle Physics Neutrino Majorana NeutrinoHistoryLNGS[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]hiukkasfysiikkaNeutrinoless Double Beta DecayEducationcrystalCUPIDNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]double-beta decay: (2neutrino)Particle Physicsscintillation countersymmetry: violationbackgroundnew physics: search forMajorana Neutrinoneutriinotsensitivityviolation: LorentzMajoronComputer Science Applicationscalorimeter: cryogenicselectron: energy spectrumsymmetry: Lorentzydinfysiikka
researchProduct

Cadmium mass measurements between the neutron shell closures at N=50 and 82

2010

International audience; The mass values of the neutron-deficient cadmium isotopes 99−109Cd and of the neutronrich isotopes 114,120,122−124,126,128Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

CadmiumIsotopehigh-precision mass measurementsChemistryStable isotope ratioPenning trapRadiochemistrychemistry.chemical_element020206 networking & telecommunications02 engineering and technology[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ISOLTRAP7. Clean energyISOLTRAPcadmium massesIsotope separationlaw.inventionlawIsotopes of cadmium0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingNeutron21.10.Dr 21.30.Fe 27.60.+j 32.10.BiNucleon
researchProduct

Strange and charm mesons at FAIR

2010

Presented at the XXXI Mazurian Lakes Conference on Physics, Piaski, Poland, August 30–September 6, 2009.

CharmCBMNuclear TheoryNuclear TheoryScalar ResonancesFOS: Physical sciencesStrange ; Charm ; Mesons ; CBM ; FAIR ; GSI ; Finite temperature ; Spectral functions ; Scalar ResonancesStrange mesonUNESCO::FÍSICA::Física molecular::Moléculas mesónicas y muónicasGSINuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph):FÍSICA [UNESCO]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentNUCLEAR-MATTERFAIREnergyMesonsFinite temperatureHigh Energy Physics::PhenomenologyUNESCO::FÍSICASpectral functionsTemperatureStrangeHigh Energy Physics - PhenomenologyCharm mesonsHigh Energy Physics::Experiment:FÍSICA::Física molecular::Moléculas mesónicas y muónicas [UNESCO]RESONANCES
researchProduct

Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: The subtraction function and moments of unpolarized structur…

2020

The forward doubly-virtual Compton scattering (VVCS) off the nucleon contains a wealth of information on nucleon structure, relevant to the calculation of the two-photon-exchange effects in atomic spectroscopy and electron scattering. We report on a complete next-to-leading-order (NLO) calculation of low-energy VVCS in chiral perturbation theory ($\chi$PT). Here we focus on the unpolarized VVCS amplitudes $T_1(\nu, Q^2)$ and $T_2(\nu, Q^2)$, and the corresponding structure functions $F_1(x, Q^2)$ and $F_2(x,Q^2)$. Our results are confronted, where possible, with "data-driven" dispersive evaluations of low-energy structure quantities, such as nucleon polarizabilities. We find significant dis…

Chiral perturbation theoryFísica-Modelos matemáticosNuclear Theory530 PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesInverse01 natural sciencesComputer Science::Digital LibrariesPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentMathematical physicsPhysics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Momentum transferCompton scatteringZero (complex analysis)High Energy Physics - PhenomenologyAmplitudeFísica nuclearNucleonElectron scattering
researchProduct

Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: II. Spin polarizabilities and moments of polarized structure…

2020

We examine the polarized doubly-virtual Compton scattering (VVCS) off the nucleon using chiral perturbation theory ($\chi$PT). The polarized VVCS contains a wealth of information on the spin structure of the nucleon which is relevant to the calculation of the two-photon-exchange effects in atomic spectroscopy and electron scattering. We report on a complete next-to-leading-order (NLO) calculation of the polarized VVCS amplitudes $S_1(\nu, Q^2)$ and $S_2(\nu, Q^2)$, and the corresponding polarized spin structure functions $g_1(x, Q^2)$ and $g_2(x,Q^2)$. Our results for the moments of polarized structure functions, partially related to different spin polarizabilities, are compared to other th…

Chiral perturbation theoryFísica-Modelos matemáticosNuclear TheoryAtomic Physics (physics.atom-ph)InverseFOS: Physical sciencesSpin structure01 natural sciencesPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciencesElectromagnetismoNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentSpin-½PhysicsTeoría de los quanta010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Compton scatteringBaryonHigh Energy Physics - PhenomenologyNucleonElectron scattering
researchProduct

Process-independent strong running coupling

2016

We unify two widely different approaches to understanding the infrared behaviour of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realised via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann--Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be…

Chiral perturbation theoryNuclear TheoryFOS: Physical sciences01 natural sciencesEffective nuclear chargeNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciencesBeta function (physics)Quantum field theoryNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCoupling constantQuantum chromodynamics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologySum rule in quantum mechanicsUltraviolet fixed pointProcess-independentRunning coupling
researchProduct

Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project

2018

Abstract Several experiments on the study of the electron neutrino mass are based on high-statistics measurements of the energy spectrum following electron capture of the radionuclide 163Ho. They rely on the availability of large, radiochemically pure samples of 163Ho. Here, we describe the production, separation, characterization, and sample production within the Electron Capture in Holmium-163 (ECHo) project. 163Ho has been produced by thermal neutron activation of enriched, prepurified 162Er targets in the high flux reactor of the Institut Laue-Langevin, Grenoble, France, in irradiations lasting up to 54 days. Irradiated targets were chemically processed by means of extraction chromatogr…

ChromatographyChemistryEcho (computing)lanthanide separationneutron activation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]010403 inorganic & nuclear chemistryIsolation (microbiology)7. Clean energy01 natural sciencesNeutrino mass determination0104 chemical sciencesCharacterization (materials science)163Ho0103 physical sciencesextraction chromatographyPhysical and Theoretical Chemistry010306 general physicsNeutron activationRadiochimica Acta
researchProduct

Magnetic fields in heavy ion collisions: flow and charge transport

2020

At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conduc…

Computer Science::Machine LearningParticle physicsPhysics and Astronomy (miscellaneous)Nuclear Theoryheavy ion collisionsFOS: Physical scienceslcsh:Astrophysicsmagnetic fieldshiukkasfysiikkamagneettikentätComputer Science::Digital Libraries01 natural sciencesElectric charge530Nuclear Theory (nucl-th)Statistics::Machine LearningHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466ddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentEngineering (miscellaneous)Nuclear ExperimentPhysicsCharge conservation010308 nuclear & particles physicsElliptic flowCharge (physics)FermionMagnetic fieldDipoleHigh Energy Physics - PhenomenologyQuantum electrodynamicsComputer Science::Mathematical Softwarelcsh:QC770-798MagnetohydrodynamicsThe European Physical Journal C
researchProduct