Search results for "nucleation"
showing 10 items of 364 documents
The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires
2015
We experimentally investigate the influence of AlN buffer growth on the nucleation and the polarity of a self-organized assembly of GaN nanowires (NWs) grown on Si. Two complementary growth mechanisms for AlN buffer deposited on Si are demonstrated. Both emphasize the aggregation of Si on the AlN surface and the growth of large cubic crystallites, namely, AlN pedestals. Further growths of GaN NWs assembly reveal that the GaN 2D layer found at the bottom of the NW assembly is the result of the coalescence of Ga-polar pyramids, whereas AlN pedestals are observed as preferential but not exclusive NW nucleation sites. NWs are N-polar or exhibit inversion domains with a Ga-polar core/N-polar she…
Explosive crystallization in amorphous CuTi thin films: a molecular dynamics study
2019
Abstract Molecular dynamic simulation was used to study mechanism of self-propagating waves of explosive crystallization (devitrification) in the CuTi metallic glass. Processes in thin rectangular samples composed of one to two million atoms were simulated and compared with experimental data. It was shown that the nucleation of primary crystalline clusters occurs homogeneously due to spontaneous fluctuations of atomic structure; the clusters not
Interaction of carbon with microstructural defects in a W-Re matrix: An ab initio assessment
2019
The interaction of carbon atoms with point defects and the core of edge and screw dislocations with Burgers vector a 0 / 2 ⟨ 111 ⟩ in W and a W-Re matrix is studied by means of ab initio calculations. The structure and energetics of the ground-state atomic configurations are presented and rationalized. It is found that di-vacancies, which are thermally unstable in pure W according to the state-of-the-art ab initio calculations, can nucleate at C and Re-C complexes, which fill the gap in the explanation of the emergence of nanovoids observed experimentally under irradiation. Also, on the basis of the recent experimental evidence and our calculations, the temperature ranges for the manifestat…
Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy
2020
We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…
Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature
2011
Abstract The growth of GaN nanowires by means of plasma assisted molecular beam epitaxy directly on Si(1 1 1) has been investigated as a function of temperature. Statistical analysis of scanning electron microscopy pictures taken for different growth temperatures has revealed that density, diameter, length and length dispersion of nanowires were strongly dependent on temperature. Length dispersion, in particular, was found to be significant at high temperature. These features have been assigned to the different duration of the nucleation process with temperature, namely to the dependence with temperature of the time necessary for the size increase of the three-dimensional precursors up to a…
Atomic Layer Deposition of Osmium
2011
Growth of osmium thin films and nanoparticles by atomic layer deposition is described. The Os thin films were successfully grown between 325 and 375 °C using osmocene and molecular oxygen as precursors. The films consisted of only Os metal as osmium oxides were not detected in X-ray diffraction measurements. Also the impurity contents of oxygen, carbon, and hydrogen were less than 1 at % each at all deposition temperatures. The long nucleation delay of the Os process facilitates either Os nanoparticle or thin film deposition. However, after the nucleation delay of about 350 cycles the film growth proceeded linearly with increasing number of deposition cycles. Also conformal growth of Os thi…
Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging
2016
We report time-resolved observations of field-induced domain wall nucleation in asymmetric ferromagnetic rings using single direction field pulses and rotating fields. We show that the asymmetric geometry of a ring allows for controlling the position of nucleation events, when a domain wall is nucleated by a rotating magnetic field. Direct observation by scanning transmission x-ray microscopy (STXM) reveals that the nucleation of domain walls occurs through the creation of transient ripplelike structures. This magnetization state is found to exhibit a surprisingly high reproducibility even at room temperature and we determine the combinations of field strengths and field directions that all…
The roles of microlites and phenocrysts during degassing of silicic magma
2022
Abstract Silicic magmas span a wide range of eruptive styles between explosive and effusive, and transitions between these styles are commonplace. Yet the triggers of switches in eruptive style remain poorly understood. Eruptions are mostly driven by degassing of magmatic water and their eruption style - effusive or explosive - is likely governed by the efficiency of outgassing as well as magma ascent rate. Microlites and phenocrysts are often purported to promote heterogeneous bubble nucleation and outgassing, both key variables in the degassing dynamics that become crucial in controlling the eruptive style. Here, in order to shed light on the role of nature, size and abundance of crystals…
Effect of strain rate cycling on microstructures and crystallographic preferred orientation during high-temperature creep
2016
Strain rate histories and strain magnitude are two crucial factors governing the evolution of dynamic recrystallized grain size and crystallographic preferred orientation (CPO) in rocks and ice masses. To understand the effect of cyclic variations in strain rate or non-steady-state deformation, we conducted two-dimensional, coaxial plane strain experiments with time-lapse observations from a fabric analyzer. There is a continuous reequilibration of microstructure and CPO development associated with constant and oscillating strain rate cycles. These can be correlated with c -axis small circle distributions, diagnostic of dynamic recrystallization involving new grain nucleation and grain boun…
Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)
2018
A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations (ICNCs). The parameterization of Barahona and Nenes (2009, hereafter BN09) allows for the treatment of ice nucleation taking into account the competition for water vapour between homogeneous and heterogeneous nucleation in cirrus clouds. Furthermore, the influence of chemically heterogeneous, polydisperse aerosols is considered by applying one of the multiple ice nucleating particle parameterizations which are included in BN09 to compute the heterogeneously formed ice crystals. BN09 has been modified in order to co…