Search results for "nucleosomes"

showing 10 items of 48 documents

Deep learning architectures for prediction of nucleosome positioning from sequences data

2018

Abstract Background Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by com…

0301 basic medicineComputer scienceCellBiochemistrychemistry.chemical_compound0302 clinical medicineStructural Biologylcsh:QH301-705.5Nucleosome classificationSequenceSettore INF/01 - InformaticabiologyApplied MathematicsEpigeneticComputer Science ApplicationsChromatinNucleosomesmedicine.anatomical_structurelcsh:R858-859.7EukaryoteDNA microarrayDatabases Nucleic AcidComputational biologySaccharomyces cerevisiaelcsh:Computer applications to medicine. Medical informatics03 medical and health sciencesDeep LearningmedicineNucleosomeAnimalsHumansEpigeneticsMolecular BiologyGeneBase Sequencebusiness.industryDeep learningResearchReproducibility of Resultsbiology.organism_classificationYeastNucleosome classification Epigenetic Deep learning networks Recurrent neural networks030104 developmental biologylcsh:Biology (General)chemistryRecurrent neural networksROC CurveDeep learning networksArtificial intelligenceNeural Networks Computerbusiness030217 neurology & neurosurgeryDNABMC Bioinformatics
researchProduct

Epigenetic IVD Tests for Personalized Precision Medicine in Cancer

2019

Epigenetic alterations play a key role in the initiation and progression of cancer. Therefore, it is possible to use epigenetic marks as biomarkers for predictive and precision medicine in cancer. Precision medicine is poised to impact clinical practice, patients, and healthcare systems. The objective of this review is to provide an overview of the epigenetic testing landscape in cancer by examining commercially available epigenetic-based in vitro diagnostic tests for colon, breast, cervical, glioblastoma, lung cancers, and for cancers of unknown origin. We compile current commercial epigenetic tests based on epigenetic biomarkers (i.e., DNA methylation, miRNAs, and histones) that can actua…

0301 basic medicineIn Vitro Diagnostic (IVD)lcsh:QH426-470precision medicineReviewBioinformatics03 medical and health sciences0302 clinical medicinemicroRNAGeneticsMedicineEpigeneticscfDNAGenetics (clinical)miRNAEpigenetic biomarkersDNA methylationbiologybusiness.industryCancerepigenetic biomarkerPrecision medicinemedicine.diseaselcsh:Genetics030104 developmental biologyHistone030220 oncology & carcinogenesisDNA methylationcirculating nucleosomesbiology.proteinMolecular MedicinebusinessGlioblastomaFrontiers in Genetics
researchProduct

Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.

2017

Background TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but intr…

0301 basic medicineNucleosome mappinglcsh:QH426-470MNase-sensitive nucleosomesRNA polymerase IIComputational biologySaccharomyces cerevisiaeReal-Time Polymerase Chain ReactionBiotecnologia03 medical and health sciencesTranscription (biology)Gene expressionGeneticsNucleosomeMNase-seqMicrococcal NucleaseMolecular BiologyGenebiologyMethodologyHigh-Throughput Nucleotide SequencingPromoterChromatinNucleosomeslcsh:Genetics030104 developmental biologyNucleosomal fuzzinessSubtraction TechniqueTFIISbiology.proteinTranscriptional Elongation FactorsGenèticaMicrococcal nuclease
researchProduct

Role of glutathione in the regulation of epigenetic mechanisms in disease

2017

Epigenetics is a rapidly growing field that studies gene expression modifications not involving changes in the DNA sequence. Histone H3, one of the basic proteins in the nucleosomes that make up chromatin, is S-glutathionylated in mammalian cells and tissues, making Gamma-L-glutamyl-L-cysteinylglycine, glutathione (GSH), a physiological antioxidant and second messenger in cells, a new post-translational modifier of the histone code that alters the structure of the nucleosome. However, the role of GSH in the epigenetic mechanisms likely goes beyond a mere structural function. Evidence supports the hypothesis that there is a link between GSH metabolism and the control of epigenetic mechanisms…

0301 basic medicineS-AdenosylmethionineEpigenetic regulation of neurogenesisADNBiologyBiochemistryEpigenesis GeneticHistones03 medical and health sciencesHistone H3Epigenetics of physical exerciseHistonasNeoplasmsPhysiology (medical)AnimalsHumansHistone codeEpigeneticsCancer epigeneticsEpigenomicsMetabolic SyndromeGenNeurodegenerative DiseasesDNA MethylationGlutathioneGenéticaNucleosomesMicroRNAs030104 developmental biologyBiochemistryHistone methyltransferaseProteínaEpigenéticaProtein Processing Post-TranslationalFree Radical Biology and Medicine
researchProduct

Variable Ranking Feature Selection for the Identification of Nucleosome Related Sequences

2018

Several recent works have shown that K-mer sequence representation of a DNA sequence can be used for classification or identification of nucleosome positioning related sequences. This representation can be computationally expensive when k grows, making the complexity in spaces of exponential dimension. This issue effects significantly the classification task computed by a general machine learning algorithm used for the purpose of sequence classification. In this paper, we investigate the advantage offered by the so-called Variable Ranking Feature Selection method to select the most informative k − mers associated to a set of DNA sequences, for the final purpose of nucleosome/linker classifi…

0301 basic medicineSequenceSettore INF/01 - InformaticaEpigenomic030102 biochemistry & molecular biologybusiness.industryComputer scienceDeep learningPattern recognitionFeature selectionDNA sequencesNucleosomesRanking (information retrieval)Set (abstract data type)03 medical and health sciencesVariable (computer science)030104 developmental biologyDimension (vector space)Feature selectionDeep learning modelsArtificial intelligenceDeep learning models Feature selection DNA sequences Epigenomic NucleosomesRepresentation (mathematics)business
researchProduct

The intrinsic combinatorial organization and information theoretic content of a sequence are correlated to the DNA encoded nucleosome organization of…

2015

Abstract Motivation: Thanks to research spanning nearly 30 years, two major models have emerged that account for nucleosome organization in chromatin: statistical and sequence specific. The first is based on elegant, easy to compute, closed-form mathematical formulas that make no assumptions of the physical and chemical properties of the underlying DNA sequence. Moreover, they need no training on the data for their computation. The latter is based on some sequence regularities but, as opposed to the statistical model, it lacks the same type of closed-form formulas that, in this case, should be based on the DNA sequence only. Results: We contribute to close this important methodological gap …

0301 basic medicineStatistics and ProbabilityNucleosome organizationComputational biologyBiologyType (model theory)BiochemistryGenomeDNA sequencing03 medical and health sciencesComputational Theory and MathematicNucleosomeMolecular BiologySequence (medicine)GeneticsGenomeSettore INF/01 - InformaticaEukaryotaComputer Science Applications1707 Computer Vision and Pattern RecognitionStatistical modelDNAChromatinNucleosomesComputer Science ApplicationsChromatinSettore BIO/18 - GeneticaComputational Mathematics030104 developmental biologyComputational Theory and MathematicsComputational MathematicBioinformatics
researchProduct

In vitro versus in vivo compositional landscapes of histone sequence preferences in eucaryotic genomes

2018

Abstract Motivation Although the nucleosome occupancy along a genome can be in part predicted by in vitro experiments, it has been recently observed that the chromatin organization presents important differences in vitro with respect to in vivo. Such differences mainly regard the hierarchical and regular structures of the nucleosome fiber, whose existence has long been assumed, and in part also observed in vitro, but that does not apparently occur in vivo. It is also well known that the DNA sequence has a role in determining the nucleosome occupancy. Therefore, an important issue is to understand if, and to what extent, the structural differences in the chromatin organization between in vit…

0301 basic medicineStatistics and Probabilityved/biology.organism_classification_rank.speciesComputational biologySaccharomyces cerevisiaeGenomeBiochemistryDNA sequencingHistones03 medical and health sciences0302 clinical medicineIn vivoComputational Theory and MathematicNucleosomeAnimalsModel organismCaenorhabditis elegansMolecular BiologySequence (medicine)GenomebiologySettore INF/01 - Informaticaved/biologyComputer Science ApplicationChromatinComputer Science ApplicationsChromatinNucleosomesComputational Mathematics030104 developmental biologyHistoneEukaryotic CellsComputational Theory and Mathematicsbiology.proteinComputer Vision and Pattern RecognitionSequence Analysis030217 neurology & neurosurgery
researchProduct

Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI.

2010

The evolutionarily conserved ATP-dependent nucleosome remodelling factor ISWI can space nucleosomes affecting a variety of nuclear processes. In Drosophila, loss of ISWI leads to global transcriptional defects and to dramatic alterations in higher-order chromatin structure, especially on the male X chromosome. In order to understand if chromatin condensation and gene expression defects, observed in ISWI mutants, are directly correlated with ISWI nucleosome spacing activity, we conducted a genome-wide survey of ISWI binding and nucleosome positioning in wild-type and ISWI mutant chromatin. Our analysis revealed that ISWI binds both genic and intergenic regions. Remarkably, we found that ISWI…

Adenosine TriphosphatasesMaleChromatin ImmunoprecipitationX ChromosomeD. melanogasterSettore INF/01 - Informaticachromatin remodellingGenomicsChromatin Assembly and DisassemblyArticleNucleosomesDNA-Binding ProteinsISWInucleosome spacingGene Expression RegulationSettore BIO/10 - BiochimicaAnimalsDrosophila ProteinsDrosophilaPromoter Regions GeneticCrosses GeneticProtein BindingTranscription FactorsThe EMBO journal
researchProduct

A low repeat length in oligodendrocyte chromatin

1985

Abstract: The behavior of oligodendrocyte chromatin after micrococcal nuclease digestion of nuclei was assayed in brains of rats of four different ages. During oligodendrocyte differentiation, a decreasing sensitivity of the chromatin to enzymatic attack was observed. On the other hand, the nucleosomal repeat length showed a slight tendency to increase during development. It is worth noting that even the highest values reported here for “oligodendrocyte’ chromatin repeat lengths are significantly lower than 200 base pairs, the value previously reported by others for “non‐astrocytic glia.” Copyright © 1985, Wiley Blackwell. All rights reserved

Base pairCellular differentiationFluorescent Antibody TechniqueOligodendrocyte differentiationBiochemistryCellular and Molecular NeuroscienceSettore BIO/10 - BiochimicamedicineAnimalsMicrococcal NucleaseNucleosomeRepetitive Sequences Nucleic AcidElectrophoresis Agar GelGeneticsNucleosomal Repeat LengthbiologyAge FactorsOligodendrocyte differentiationDNAMolecular biologyChromatinOligodendrocyteNucleosomesRatsChromatinOligodendrogliamedicine.anatomical_structureLiverbiology.proteinSettore MED/26 - NeurologiaNucleosomal repeat lengthNeurogliaBrain StemMicrococcal nuclease
researchProduct

Topoisomerase II regulates yeast genes with singular chromatin architectures

2013

Eukaryotic topoisomerase II (topo II) is the essential decatenase of newly replicated chromosomes and the main relaxase of nucleosomal DNA. Apart from these general tasks, topo II participates in more specialized functions. In mammals, topo IIa interacts with specific RNA polymerases and chromatin-remodeling complexes, whereas topo IIb regulates developmental genes in conjunction with chromatin remodeling and heterochromatin transitions. Here we show that in budding yeast, topo II regulates the expression of specific gene subsets. To uncover this, we carried out a genomic transcription run-on shortly after the thermal inactivation of topo II. We identified a modest number of genes not invol…

BioquímicaHeterochromatinADNSaccharomyces cerevisiaeGene Regulation Chromatin and EpigeneticsGenètica molecularChromatin remodelingHistonesCromatina03 medical and health sciencesGene Expression Regulation FungalGeneticsNucleosomeDNA FungalPromoter Regions GeneticTranscription factor030304 developmental biologyGenetics0303 health sciencesbiologyPolyamine transport030302 biochemistry & molecular biologyPromoterExpressió gènicaChromatinChromatinNucleosomesHistoneDNA Topoisomerases Type IIMutationbiology.proteinGenèticaTranscription FactorsNucleic Acids Research
researchProduct