Search results for "onde"
showing 10 items of 15565 documents
Preparation, Characterisation and Dielectric Properties of YBa2Cu3O7-δ/ Insulator-Heterostructures
1996
YBa 2 Cu 3 O 7-δ /insulator/Au-heterostructures on SrTiO 3 or LaAlO 3 substrates were prepared to study the properties of the materials SrTiO 3 , BaTiO 3 and Ceo 2 . X-ray diffraction measurements in Bragg-Brentano geometry show c-axis-oriented growth for the superconductor and the insulators SrTiO 3 and CeO 2 . Typical values for the rocking curve width of the different insulating films are between 0.4° and 0.8°. The highest breakdown fields are measured for the insulator SrTiO 3 with +37.5 kV/mm and -8.8 kV/mm. The permittivity for CeO 2 is independent of applied field and only weakly temperature dependent. This is in contrast to the perovskite type insulators, where the permittivity depe…
Effect of Cu doping on Ba0.95Pb0.05TiO3 electrical properties studied by means of electrical impedance spectroscopy
2019
The ceramics of 0.95BaTiO3–0.05PbTiO3+Xwt.%CuO (X = 0.05, 0.1, 1, 3) were prepared by a solid phase reaction. The structural and morphology studies were carried out by means of X-ray diffraction te...
Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectri…
2018
[EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to pa…
Inhomogeneous electron distribution in InN nanowires: Influence on the optical properties
2012
In this work, we study theoretically and experimentally the influence of the surface electron accumulation on the optical properties of InN nanowires. For this purpose, the photoluminescence and photoluminescence excitation spectra have been measured for a set of self-assembled InN NWs grown under different conditions. The photoluminescence excitation experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN nanowires. With the self-consistent model we can explore how the optical absorption depends on nanowires radius and doping concentration. Our model solves the Schrodinger equation for a cylindrical nanowire of infinite length, a…
Photo-electrical and transport properties of hydrothermal ZnO
2016
We performed the studies of optical, photoelectric, and transport properties of a hydrothermal bulk n-type ZnO crystal by using the contactless optical techniques: photoluminescence, light-induced transient grating, and differential reflectivity. Optical studies revealed bound exciton and defect-related transitions between the donor states (at ∼60 meV and ∼240 meV below the conduction band) and the deep acceptor states (at 0.52 eV above the valence band). The acceptor state was ascribed to VZn, and its thermal activation energy of 0.43 eV was determined. A low value of carrier diffusion coefficient (∼0.1 cm2/s) at low excitations and temperatures up to 800 K was attributed to impact the rec…
High‐Quality Si‐Doped β‐Ga 2 O 3 Films on Sapphire Fabricated by Pulsed Laser Deposition
2020
The EU Horizon 2020 project CAMART2 is acknowledged for partly supporting the project, and the Ion Technology Centre, ITC, in Sweden is acknowledged for ion beam analysis (ERDA).
Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics
2019
Abstract Colloidal solutions of magnetic nanoparticles are usually employed when the fluidity and magnetic properties are required at the same time, either in technical or biomedical applications. However, when the magnetic size of the nanoparticles is large enough (>12–15 nm) the colloid may form an equilibrium structure with or without the external magnetic field, which can significantly influence its rheology. Using multi-particle collision dynamics we study the internal structure and viscosity of the magnetic colloids at varying magnitudes of the externally applied field. We show a generalized structural behavior across all studied regimes and an appreciable increase of flow resistance …
Preface for MMM 2016 focus issue
2017
International audience
Optical properties of InN nanocolumns: Electron accumulation at InN non‐polar surfaces and dependence on the growth conditions
2009
InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present atthe non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the densit…
High-frequency electrodeless lamps in argon–mercury mixtures
2005
In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…