Search results for "orage"

showing 10 items of 1343 documents

The impact of visual working memory capacity on the filtering efficiency of emotional face distractors.

2018

Emotional faces can serve as distractors for visual working memory (VWM) tasks. An event-related potential called contralateral delay activity (CDA) can measure the filtering efficiency of face distractors. Previous studies have investigated the influence of VWM capacity on filtering efficiency of simple neutral distractors but not of face distractors. We measured the CDA indicative of emotional face filtering during a VWM task related to facial identity. VWM capacity was measured in a separate colour change detection task, and participants were divided to high- and low-capacity groups. The high-capacity group was able to filter out distractors similarly irrespective of its facial emotion. …

'Happy' facevisual short-term memoryAdultMaleAdolescentmedia_common.quotation_subjectEmotionsmemory storagedistractor filteringfacial expressionsnäkömuistita3112050105 experimental psychologyTask (project management)03 medical and health sciencesYoung Adult0302 clinical medicineContrast (vision)Humans0501 psychology and cognitive sciencessustained posterior contralateral negativityVisual short-term memoryilmeetbookcontralateral delay activityEvoked Potentialsta515media_commonFacial expressionWorking memoryGeneral Neuroscience05 social sciencesbook.written_worktyömuistiNeuropsychology and Physiological PsychologyMemory Short-TermDelay DiscountingFace (geometry)FemalePsychologyFacial Recognition030217 neurology & neurosurgeryChange detectionCognitive psychologyBiological psychology
researchProduct

Structural characterization and electrochemical hydrogen storage properties of Ti2LxZrxNi (x [ 0, 0.1, 0.2) alloys prepared by mechanical alloying

2013

International audience; Nominal Ti2Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The effect of milling time and Zr substitution for Ti on the microstructure was characterized by XRD, SEM and TEM, and the discharge capacities of Ti2xZrxNi (x 1/4 0, 0.1, 0.2) were examined by electrochemical measurements at galvanostatic conditions. XRD analysis shows that amorphous phase of Ti2Ni can be elaborated by 60 h of milling, whereas Zr substitution hinders amorphization process of the system. The products of ball milling nominal Ti2xZrxNi (x 1/4 0.1, 0.2) were austenitic (Ti, Zr)Ni and partly TiO, despite the fact that the operation was carrie…

010302 applied physicsAusteniteMaterials scienceRenewable Energy Sustainability and the Environment020209 energyMetallurgyEnergy Engineering and Power Technology02 engineering and technologyCondensed Matter PhysicsElectrochemistryMicrostructure01 natural sciences7. Clean energyCharacterization (materials science)Amorphous solidHydrogen storageFuel TechnologyChemical engineering0103 physical sciences0202 electrical engineering electronic engineering information engineering[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsBall millCurrent density
researchProduct

Effects of Thermal Neutron Irradiation on a Self-Refresh DRAM

2020

International audience; In this study, static and dynamic test methods were used to define the response of a self-refresh DRAM under thermal neutron irradiation. The neutron-induced failures were investigated and characterized by event cross-sections, soft-error rate and bitmaps evaluations, leading to an identification of permanent and temporarily stuck cells, block errors, and single-bit upsets.

010302 applied physicsMaterials science010308 nuclear & particles physicsNuclear engineering01 natural sciencesNeutron temperature[SPI.TRON]Engineering Sciences [physics]/Electronics0103 physical sciences[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsNeutronIrradiation[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsDramBlock (data storage)Dynamic testing2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS)
researchProduct

Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices

2020

CA extern Antidot lattices are potential candidates to act as bit patterned media for data storage as they are able to trap nanoscale magnetic domains between two adjacent holes. Here, we demonstrate the combination of micromagnetic modeling and x-ray microscopy. Detailed simulation of these systems can only be achieved by micromagnetic modeling that takes thermal effects into account. For this purpose, a Landau-Lifshitz-Bloch approach is used here. The calculated melting of magnetic domains within the antidot lattice is reproduced experimentally by x-ray microscopy. Furthermore, we compare conventional scanning transmission x-ray microscopy with resolution enhanced ptychography. Hence, we …

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainbusiness.industryGeneral Physics and Astronomy02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesPtychographylcsh:QC1-999Lattice (order)0103 physical sciencesComputer data storagePatterned mediaThermalMicroscopyddc:5300210 nano-technologybusinessNanoscopic scalelcsh:PhysicsAIP Advances
researchProduct

Low-temperature luminescence of catangasite single crystals under excitation by vacuum ultraviolet synchrotron radiation

2020

The luminescent properties of Ca3TaGa3Si2O14 (CTGS, catangasite) single crystals have been studied by means of the vacuum ultraviolet excitation spectroscopy utilizing synchrotron radiation from 1.5 GeV storage ring of MAX IV synchrotron facility. Two emission bands at 320 nm (3.87 eV) and 445 nm (2.78 eV) have been detected. Examining excitation spectra in vacuum ultraviolet spectral range, the 320 nm emission band was explained as the emission band of self-trapped exciton in CTGS single crystal. Its atomic structure is discussed. It is also proposed that the 445 nm (2.78 eV) emission in the CTGS is due to the F centers, which have shown a well-resolved excitation (absorption) band at 5.1 …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaExcitonGeneral Physics and AstronomySynchrotron radiation01 natural sciencesSynchrotronlaw.inventionlaw0103 physical sciencesAtomic physics010306 general physicsAbsorption (electromagnetic radiation)LuminescenceSingle crystalStorage ringExcitation
researchProduct

Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

2021

Review of scientific instruments 92(5), 053703 (2021). doi:10.1063/5.0046567

010302 applied physicsPhotonMaterials scienceElectronPhotoelectric effect01 natural sciencesFluenceSpace charge010305 fluids & plasmas620Electric fieldExtreme ultraviolet0103 physical sciencesddc:620Atomic physicsInstrumentationStorage ring
researchProduct

Synchronous precessional motion of multiple domain in a ferromagnetic nanowire by perpendicular field pulses

2014

Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest …

010302 applied physicsPhysicsMagnetization dynamicsMultidisciplinaryMagnetic domainCondensed matter physicsField (physics)Magnetic storageGeneral Physics and Astronomy02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyDisplacement (vector)Articlelaw.inventionDomain (software engineering)Magnetic fieldNuclear magnetic resonanceDomain wall (magnetism)law0103 physical sciencesddc:5300210 nano-technologyNature Communications
researchProduct

High Gradient Performance of an S-Band Backward Traveling Wave Accelerating Structure for Medical Hadron Therapy Accelerators

2018

The high-gradient performance of an accelerating structure prototype for a medical proton linac is presented. The structure was designed and built using technology developed by the CLIC collaboration and the target application is the TULIP (Turning Linac for Proton therapy) proposal developed by the TERA foundation. The special feature of this design is to produce gradient of more than 50 MV /m in low-β accelerating structures (v/c=0.38). The structure was tested in an S-band test stand at CERN. During the tests, the structure reached over above 60 MV/m at 1.2 μs pulse length and breakdown rate of about 5x10⁻⁶ bpp. The results presented include ultimate performance, long term behaviour and …

010308 nuclear & particles physicsU01 Medical Applications[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]08 Applications of Accelerators Tech Transfer and Industrial RelationscavityAccelerators and Storage Rings01 natural sciencesAccelerator Physicsradiation0103 physical scienceslinac010306 general physicsaccelerating-gradientproton
researchProduct

Unveiling the Occurrence of Co(III) in NiCo Layered Electroactive Hydroxides: The Role of Distorted Environments

2020

Co- and Ni-based layered hydroxides constitute a unique class of two-dimensional inorganic materials with exceptional chemical diversity, physicochemical properties and outstanding performance as supercapacitors and overall water splitting catalysts. Recently, the occurrence of Co(III) in these phases has been proposed as a key factor that enhance their electrochemical performance. However, the origin of this centers and control over its contents remains as an open question. We employed the Epoxide Route to synthesize a whole set of α-NiCo layered hydroxides. The PXRD and XAS characterization alert about the occurrence of Co(III) as a consequence of the increment in the Ni content. DFT+U si…

010402 general chemistryElectrochemistry01 natural sciencesRedoxCatalysisCatalysis//purl.org/becyt/ford/1 [https]symbols.namesake//purl.org/becyt/ford/1.4 [https]LAYERED HYDROXIDESX-ray absorption spectroscopy2D MATERIALS010405 organic chemistryChemistryOrganic ChemistryFermi levelGeneral Chemistry0104 chemical sciencesCharacterization (materials science)Chemical engineeringOctahedronWATER SPLITTINGsymbolsWater splittingENERGY STORAGESUPERCAPACITANCEChemistry – A European Journal
researchProduct

Scalable and Selective Preparation of 3,3′,5,5′-Tetramethyl-2,2′-biphenol

2016

Biphenols are indispensable building blocks in ligand systems for organic catalysis. 3,3′5,5′-Tetramethyl-2,2′-biphenol is a particular versatile motif in different catalytic systems. We developed an easy to perform and scalable process to give access to large quantities of this important building block by the use of selenium dioxide, a common and readily available oxidizer.

010405 organic chemistryLigandChemistryOrganic ChemistryScalabilityOrganic chemistryPhysical and Theoretical Chemistry010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesCatalysisBlock (data storage)Organic Process Research & Development
researchProduct