Search results for "oxazoline"

showing 10 items of 50 documents

Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inks

2020

Amphiphilic block copolymers that undergo (reversible) physical gelation in aqueous media are of great interest in ditIerent areas including drug delivery, tissue engineering, regenerative medicine, and biofabrication. We investigated a small library of ABA-type triblock copolymers comprising poly(2-methyl-2-oxazoline) as the hydrophilic shell A and different aromatic poly(2-oxazoline)s and poly(2-oxazine)s cores B in an aqueous solution at different concentrations and temperatures. Interestingly, aqueous solutions of poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazine)-block-poly(2-methyl-2-oxazoline) (PMeOx-b-PPheOzi-b-PMeOx) undergo inverse thermogelation below a critical temperatur…

UCSTMaterials science116 Chemical sciencesbiomaterial ink02 engineering and technology010402 general chemistry01 natural sciencesUpper critical solution temperatureCHEMISTRYAmphiphileCopolymerGeneral Materials SciencePOLYOXAZOLINESTEMPERATUREchemistry.chemical_classificationdispense plottingAqueous solutionSUPRAMOLECULAR HYDROGELPolymer021001 nanoscience & nanotechnologyMicrostructure3. Good health0104 chemical sciencesPOLY(2-OXAZOLINE)Spoly(2-oxazoline)POLYMERIZATIONPolymerizationchemistryChemical engineeringwormlike micelles2-OXAZOLINESsmart hydrogelPOLYMERS0210 nano-technologyBEHAVIORBiofabrication
researchProduct

Reactive Compatibilization of PBT/EVA Blends with an Ethylene‐Acrylic Acid Copolymer and a Low Molar Mass Bis‐Oxazoline

2004

compatibilizationreactive processinpolymer blendoxazoline
researchProduct

Reactive compatibilization of PA6/LDPE blends with an ethylene–acrylic acid copolymer and a low molar mass bis-oxazoline

2003

Abstract A sample of polyamide-6 (PA) was blended with low density polyethylene (LDPE) in the 80/20 wt/wt ratio, either without and with 2 phr of an ethylene–acrylic acid copolymer (EAA), Which was known to behave as a compatibilizer precursor, and the effect of the addition of small amounts (0.2 or 0.35 phr) of a fourth component, 2,2′-(1,3-phenylene)-bis(2-oxazoline) (PBO), was investigated. The reactions of PBO with EAA, PA and their blends were studied by recording as a function of time the torque applied to the blending apparatuses and by studying the solubility behavior of the products in formic acid. The PALDPE blends were prepared in a co-rotating twin screw extruder and were charac…

Molar massPolymers and PlasticsFormic acidOrganic Chemistryreactive compatibilizationchemistry.chemical_compoundLow-density polyethylenePA/LDPE blendDifferential scanning calorimetrySettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringPolymer chemistryMaterials ChemistryCopolymerPolymer blendSolubilityIonomeroxazoline
researchProduct

Efficient Synthesis of β-Halogeno Protected L-Alanines and Their β-Phosphonium Derivatives.

2003

Abstract Ring opening of oxazolines, prepared from l -serinates, with trimethylsilyl halides (TMSX) led to β-halogeno-N-benzoyl-α-amino esters in good to excellent yields. Quaternization of triphenylphosphine by the β-bromo or -iodo amino esters gave the corresponding β-phosphonium salts in overall yields of up to 93% and with e.e. >96%. Hydrolysis of the ester function afforded the phosphonium salt bearing an N-benzoyl-α-amino acid substituent, with partial racemization. However, the reaction of the TMSX with the carboxylic salt, prepared by saponification of the starting oxazoline ester, furnished the corresponding β-halogeno-N-benzoyl-α-amino acids in 70–95% yields. Quaternization of tri…

TrimethylsilylAmino estersOrganic ChemistryPhosphonium saltGeneral MedicineOxazolineMedicinal chemistryCatalysisInorganic Chemistrychemistry.chemical_compoundHydrolysischemistryOrganic chemistryPhosphoniumPhysical and Theoretical ChemistryTriphenylphosphineRacemizationChemInform
researchProduct

ChemInform Abstract: Enantioselective Allylic Substitution Using a Novel (Phosphino-α-D-glucopyrano-oxazoline)palladium Catalyst.

2010

chemistry.chemical_compoundAllylic rearrangementchemistrySubstitution (logic)Enantioselective synthesisOrganic chemistryGeneral MedicineOxazolinePalladium catalystChemInform
researchProduct

N1-Functionalized Indole-Phosphane Oxazoline (IndPHOX) Ligands in Asymmetric Allylic Substitution Reactions

2012

N-Functionalized IndPHOX ligands bearing various groups have been synthesized and the effects of the N1-substituent on the reaction rate, yield, and asymmetric induction in a palladium-catalyzed allylic substitution reaction are reported. The presence of an oxygen atom in the ligands, namely an N-MOM or N-THP group, led to enhancement of the enantioselectivity in the allylic amination reaction. In addition, a ligand with a chiral oxazoline ring at C-1 and a phosphane substituent at C-2 provided high enantioselectivity in good yield in an asymmetric allylic alkylation reaction.

Substitution reactionAllylic rearrangementChemistryorganic chemicalsOrganic ChemistrySubstituentfood and beveragesOxazolineAlkylationAsymmetric inductionMedicinal chemistrychemistry.chemical_compoundTsuji–Trost reactionPhysical and Theoretical Chemistryta116AminationEuropean Journal of Organic Chemistry
researchProduct

Tuning the surface of nanoparticles: Impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake

2016

Item does not contain fulltext Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asym…

SerumTime FactorsPolymers and PlasticsSurface PropertiesNanoparticleBioengineeringProtein Corona02 engineering and technologyChemical Fractionation010402 general chemistry01 natural sciencesCell LineBiomaterialschemistry.chemical_compoundAdsorptionDynamic light scatteringMaterials ChemistryPolyaminesOrganic chemistryHumanspoly(2-ethyl-2-oxazoline)Particle SizeElectrophoresis Agar Gelpoly(ethylene glycol)RhodaminesProteinscellular uptake021001 nanoscience & nanotechnologyprotein adsorptionDynamic Light ScatteringEndocytosis0104 chemical scienceschemistryChemical engineeringSurface modificationNanomedicineInstitut für ChemienanoparticlesAdsorption0210 nano-technologyEthylene glycolNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]BiotechnologyProtein adsorption
researchProduct

Development of novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation.

2015

Novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation were developed; some of them possess K(i) values in the micromolar range. We studied the structure-activity relationship of these derivatives and we performed docking studies, which allowed us to find out the key interactions established by the inhibitors with the target enzyme. Biological results indicate that the nature of the P2 and P3 substituents and their binding to the S2/S3 pockets is strictly interdependent.

InhibitorMolecular modelCell SurvivalClinical BiochemistryTrypanosoma brucei bruceiAntiprotozoal AgentsPharmaceutical ScienceMolecular modelingCysteine Proteinase InhibitorsBiochemistryCell Linechemistry.chemical_compoundMiceStructure-Activity RelationshipCysteine ProteasesDrug DiscoveryAnimalsMolecular Biology3-Bromo isoxazolinechemistry.chemical_classificationDipeptide-likeDipeptideBinding SitesOrganic ChemistryDipeptidesIsoxazolesCombinatorial chemistryProtein Structure TertiaryMolecular Docking SimulationCysteine EndopeptidasesEnzymeRhodesainchemistryWarheadDocking (molecular)Drug DesignMolecular MedicineRhodesain Dipeptide-like 3-Bromo isoxazoline Inhibitor Molecular modelingBioorganicmedicinal chemistry
researchProduct

Reactions Occurring during the Melt Mixing of Nylon 6 and Oxazoline−Cyclophosphazene Units

2009

Specific reactions of amino and carboxyl end groups of Nylon 6 with the reactive oxazoline groups belonging to a cyclophosphazene compound (referred as CP20XA) were carried out at 240 °C for different times, under inert atmosphere. Ny6 polymers terminated with one specific reactive chain end (-COOH or NH2) were reacted with different amounts of CP20XA to study the kinetic order of the reactions. All Ny6-CP20XA reacted products soluble in trifluoroethanol (TFE) were well characterized by MALDI-TOF MS, FT-IR and ( 1H and 13C) NMR techniques. The MALDI-TOF results show that the oxazoline rings react with the carboxyl chain ends of Ny6 following second-order kinetics. The reactions with amino c…

chemistry.chemical_classificationOxazolineReaction mechanismPolymers and PlasticsOrganic ChemistryKineticsSide reactionPolymerOxazolineReactive BlendingInorganic Chemistrychemistry.chemical_compoundEnd-groupSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiNylon6Nylon 6chemistrycyclophosphazenes polyamide end-functionalization MALDI-TOFMaterials ChemistryOrganic chemistryInert gasMALDIMacromolecules
researchProduct

Identification of New Odorous Heterocyclic Compounds in French Blue Cheeses

2000

International audience

0106 biological sciencesOXAZOLINESBLEU[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering[SDV.IDA]Life Sciences [q-bio]/Food engineering010401 analytical chemistry[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering[SDV.IDA] Life Sciences [q-bio]/Food engineering01 natural sciencesComputingMilieux_MISCELLANEOUS010606 plant biology & botany0104 chemical sciences
researchProduct