Search results for "pareto optimality"
showing 10 items of 35 documents
An Introduction to Multiobjective Optimization
2016
Multiobjective optimization in industry has rapidly grown in importance, as it provides the possibility for a designer or an engineer to consider the problem in hand as a whole. Solution to a multiobjective optimization problem involves several optimal solutions with different trade-offs. As a result upon optimization s(he) can understand the trade-offs between different solutions and subsequently choose the most preferred solution. In this paper, we provide a bird’s eye view of the different methods available in the literature to solve multiobjective optimization problems. Specifically, in literature there exists at least two different research fields i.e. multiple criteria decision making…
NAUTILUS framework : towards trade-off-free interaction in multiobjective optimization
2016
In this paper, we present a framework of different interactive NAUTILUS methods for multiobjective optimization. In interactive methods, the decision maker iteratively sees solution alternatives and provides one’s preferences in order to find the most preferred solution. We question the widely used setting that the solutions shown to the decision maker should all be Pareto optimal which implies that improvement in any objective function necessitates allowing impairment in some others. Instead, in NAUTILUS we enable the decision maker to make a free search without having to trade-off by starting from an inferior solution and iteratively approaching the Pareto optimal set by allowing all obje…
An integrated multiobjective design tool for process design
2006
An integrated multiobjective design tool has been developed for chemical process design. This tool combines the rigorous process calculations of the BALAS process simulator and the interactive multiobjective optimization method NIMBUS. With this design tool, the designer can consider several conflicting performance criteria simultaneously. The interactive nature of this tool allows the designer to learn about the behavior of the problem. To illustrate the possibilities of this design tool, two case studies are considered. One of them is related to paper making while the other one is related to power plants.
A solution process for simulation-based multiobjective design optimization with an application in the paper industry
2014
In this paper, we address some computational challenges arising in complex simulation-based design optimization problems. High computational cost, black-box formulation and stochasticity are some of the challenges related to optimization of design problems involving the simulation of complex mathematical models. Solving becomes even more challenging in case of multiple conflicting objectives that must be optimized simultaneously. In such cases, application of multiobjective optimization methods is necessary in order to gain an understanding of which design offers the best possible trade-off. We apply a three-stage solution process to meet the challenges mentioned above. As our case study, w…
Simultaneous optimization of harvest schedule and data quality
2015
In many recent studies, the value of forest inventory information in harvest scheduling has been examined. In a previous paper, we demonstrated that making measurement decisions for stands for which the harvest decision is uncertain simultaneously with the harvest decisions may be highly profitable. In that study, the quality of additional measurements was not a decision variable, and the only options were between making no measurements or measuring perfect information. In this study, we introduce data quality into the decision problem, i.e., the decisionmaker can select between making imperfect or perfect measurements. The imperfect information is obtained with a specific scenario tree fo…
Interactive Nonlinear Multiobjective Optimization Methods
2016
An overview of interactive methods for solving nonlinear multiobjective optimization problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory Pareto optimal solution can be found for her or his. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the role of the decision maker is very important in interactive methods, methods presented are classified according to the type of preference information that the decision maker is assumed to provide. peerReviewed
Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies
2018
We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization as there is no reason to assume that all objective functions should take an equal amount of time to be evaluated (particularly when objectives are evaluated separately). To cope with such problems, we propose a variation of the Kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) called heterogeneous K-RVEA (short HK-RVEA). This algorithm is a merger of two main concepts designed to account for different latencies: A single-objective evolutionary a…
A New Hybrid Mutation Operator for Multiobjective Optimization with Differential Evolution
2011
Differential evolution has become one of the most widely used evolution- ary algorithms in multiobjective optimization. Its linear mutation operator is a sim- ple and powerful mechanism to generate trial vectors. However, the performance of the mutation operator can be improved by including a nonlinear part. In this pa- per, we propose a new hybrid mutation operator consisting of a polynomial based operator with nonlinear curve tracking capabilities and the differential evolution’s original mutation operator, to be efficiently able to handle various interdependencies between decision variables. The resulting hybrid operator is straightforward to implement and can be used within most evoluti…
PAINT : Pareto front interpolation for nonlinear multiobjective optimization
2011
A method called PAINT is introduced for computationally expensive multiobjective optimization problems. The method interpolates between a given set of Pareto optimal outcomes. The interpolation provided by the PAINT method implies a mixed integer linear surrogate problem for the original problem which can be optimized with any interactive method to make decisions concerning the original problem. When the scalarizations of the interactive method used do not introduce nonlinearity to the problem (which is true e.g., for the synchronous NIMBUS method), the scalarizations of the surrogate problem can be optimized with available mixed integer linear solvers. Thus, the use of the interactive meth…
A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization
2018
We propose a surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed evolutionary algorithm for many-objective optimization that relies on a set of adaptive reference vectors for selection. The proposed surrogateassisted evolutionary algorithm uses Kriging to approximate each objective function to reduce the computational cost. In managing the Kriging models, the algorithm focuses on the balance of diversity and convergence by making use of the uncertainty information in the approximated objective values given by the Kriging models, the distr…