Search results for "partition function"

showing 10 items of 35 documents

Quantum-chemical determination of Born–Oppenheimer breakdown parameters for rotational constants: the open-shell species CN, CO+ and BO

2013

The quantum-chemical protocol for computing Born-Oppenheimer breakdown corrections to rotational constants in the case of diatomic molecules is extended to open-shell species. The deviation from the Born-Oppenheimer equilibrium rotational constant is obtained by considering three contributions: the adiabatic correction to the equilibrium bond distance, the electronic contribution to the moment of inertia requiring the computation of the rotational g-tensor, and the so-called Dunham correction. Values for the Born-Oppenheimer breakdown parameters of CN, CO+, and BO in their (2)sigma(+) electronic ground states are reported based on coupled-cluster calculations of the involved quantities and …

AB INITIO CALCULATIONSChemistryBorn–Huang approximationBiophysicsBorn–Oppenheimer approximationRotational transitionRotational temperatureCondensed Matter PhysicsROTATIONAL CONSTANTSDiatomic moleculesymbols.namesakesymbolsBorn-Oppenheimer breakdown correctionRotational spectroscopyPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsRotational partition functionMolecular BiologyOpen shellMolecular Physics
researchProduct

Gauge-origin independent calculation of magnetizabilities and rotational g tensors at the coupled-cluster level.

2007

An implementation of the gauge-origin independent calculation of magnetizabilities and rotational g tensors at the coupled-cluster (CC) level is presented. The properties of interest are obtained as second derivatives of the energy with respect to the external magnetic field (in the case of the magnetizability) or with respect to magnetic field and rotational angular momentum (in the case of the rotational g tensor), while gauge-origin independence and fast basis-set convergence are ensured by using gauge-including atomic orbitals (London atomic orbitals) as well as their extension to treat rotational perturbations (rotational London atomic orbitals). The implementation within our existing …

Angular momentumCoupled clusterMagnetic momentAtomic orbitalChemistryQuantum mechanicsGeneral Physics and AstronomyRotational transitionRotational temperatureTensorPhysical and Theoretical ChemistryAtomic physicsRotational partition functionThe Journal of chemical physics
researchProduct

Thouless-Valatin Rotational Moment of Inertia from the Linear Response Theory

2017

Spontaneous breaking of continuous symmetries of a nuclear many-body system results in appearance of zero-energy restoration modes. Such modes introduce a non-physical contributions to the physical excitations called spurious Nambu-Goldstone modes. Since they represent a special case of collective motion, they are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total angular momentum operator. We examine the role and effects of the pairing correlations on the rotational cha…

Angular momentumNuclear Theorymedia_common.quotation_subjectNuclear TheoryFOS: Physical sciencesRotary inertiaInertia114 Physical sciences01 natural sciencesbinding energy and massesMoment of inertia factorNuclear Theory (nucl-th)symbols.namesake0103 physical sciences010306 general physicsRotational partition functionEuler's equationsEQUATIONSmedia_commonPhysicsta114nuclear density functional theory010308 nuclear & particles physicstiheysfunktionaaliteoriacollective modelsMoment of inertianuclear structure and decayssuprajuoksevuusRotational energyClassical mechanicssuperfluiditysymbolsydinfysiikka
researchProduct

Anharmonic vibrational frequency calculations for solvated molecules in the B3LYP Kohn–Sham basis set limit

2012

Abstract The solvent dependence of harmonic and anharmonic vibrational wavenumbers of water, formaldehyde and formamide was studied using the B3LYP method. The results obtained with the hierarchy of Jensen's polarization-consistent basis sets were fitted with two-parameter formula toward the B3LYP Kohn–Sham complete basis set (CBS) limit. Anharmonic corrections have been obtained by a second order perturbation treatment (VPT2) and vibrational configuration interaction (VCI) method. The solvent environment was treated according to the self-consistent reaction field polarizable continuum model (SCRF PCM) approach.

ChemistryVibrational partition functionMolecular vibrationAnharmonicityPhysics::Atomic and Molecular ClustersKohn–Sham equationsPhysics::Chemical PhysicsSolvent effectsConfiguration interactionAtomic physicsPolarizable continuum modelSpectroscopyBasis setVibrational Spectroscopy
researchProduct

The partition sum of methane at high temperature

2008

11 pages, 4 Tables, 3 Figures Computer code on line at http://icb.u-bourgogne.fr/JSP/TIPS.jsp; International audience; The total internal partition function of methane is revisited to provide reliable values at high temperature. A multi-resolution approach is used to perform a direct summation over all the rovibrational energy levels up to the dissociation limit. A computer code is executable on line at the URL : http://icb.u-bourgogne.fr/JSP/TIPS.jsp to allow the calculation of the partition sum of methane at temperatures up to 3000 K. It also provides detailed information on the density of states in the relevant spectral ranges. The recommended values include uncertainty estimates. It is …

Computational spectroscopyRovibrational spectroscopy33.20.Vq 33.70.Fd01 natural sciences[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]MethaneDissociation (chemistry)chemistry.chemical_compound0103 physical sciencesSpectroscopy010303 astronomy & astrophysicsSpectroscopySpectroscopic databasesPhysics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Radiation010304 chemical physicsPartition sumRotational–vibrational spectroscopyPartition function (mathematics)Atmospheric temperature rangeAtomic and Molecular Physics and OpticsComputational physicschemistry[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Density of statesHITRANAtomic physicsMethane
researchProduct

Quantum and Classical Statistical Mechanics of the Non-Linear Schrödinger, Sinh-Gordon and Sine-Gordon Equations

1985

We are going to describe our work on the quantum and classical statistical mechanics of some exactly integrable non-linear one dimensional systems. The simplest is the non-linear Schrodinger equation (NLS) $$i{\psi _t} = - {\psi _{XX}} + 2c{\psi ^ + }\psi \psi $$ (1) where c, the coupling constant, is positive. The others are the sine- and sinh-Gordon equations (sG and shG) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sin \phi $$ (1.2) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sinh \phi $$ (1.3)

Coupling constantPhysicsPartition function (statistical mechanics)Schrödinger equationsymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicssymbolsRelativistic wave equationsMethod of quantum characteristicsHigh Energy Physics::ExperimentSupersymmetric quantum mechanicsQuantum statistical mechanicsFractional quantum mechanicsMathematical physics
researchProduct

The pianigiani-yorke measure for topological markov chains

1997

We prove the existence of a Pianigiani-Yorke measure for a Markovian factor of a topological Markov chain. This measure induces a Gibbs measure in the limit set. The proof uses the contraction properties of the Ruelle-Perron-Frobenius operator.

Discrete mathematicsMathematics::Dynamical SystemsMarkov chain mixing timeMarkov chainGeneral MathematicsMarkov processPartition function (mathematics)TopologyHarris chainNonlinear Sciences::Chaotic Dynamicssymbols.namesakeBalance equationsymbolsExamples of Markov chainsGibbs measureMathematicsIsrael Journal of Mathematics
researchProduct

Quantum-chemical calculation of Born–Oppenheimer breakdown parameters to rotational constants

2010

The paper describes how Born–Oppenheimer breakdown parameters for the rotational constants of diatomic molecules can be determined via quantum-chemical computations. The deviations from the Born–Oppenheimer equilibrium values are accounted for by considering the adiabatic correction to the equilibrium bond distances, the electronic contribution to the rotational constant via the rotational g tensor, and the so-called Dunham correction, which can be computed directly from a polynomial expansion of the potential curve around the equilibrium distance. Calculations for HCl, SiS, and HF demonstrate the accuracy that can be achieved in the theoretical treatment of the considered Born–Oppenheimer …

Field (physics)ChemistryBiophysicsBorn–Oppenheimer approximationRotational transitionRotational temperatureCondensed Matter PhysicsDiatomic moleculesymbols.namesakesymbolsRotational spectroscopyPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsRotational partition functionAdiabatic processMolecular BiologyMolecular Physics
researchProduct

Calcium binding and ionic conduction in single conical nanopores with polyacid chains: model and experiments.

2012

Calcium binding to fixed charge groups confined over nanoscale regions is relevant to ion equilibrium and transport in the ionic channels of the cell membranes and artificial nanopores. We present an experimental and theoretical description of the dissociation equilibrium and transport in a single conical nanopore functionalized with pH-sensitive carboxylic acid groups and phosphonic acid chains. Different phenomena are simultaneously present in this basic problem of physical and biophysical chemistry: (i) the divalent nature of the phosphonic acid groups fixed to the pore walls and the influence of the pH and calcium on the reversible dissociation equilibrium of these groups; (ii) the asym…

General Physics and AstronomyIonic bondingFunctionalizedDissociation (chemistry)Conical nanoporeNanoscale regionschemistry.chemical_compoundNanoporesI - V curveIonic conductivityGeneral Materials ScienceConical nanoporesPhosphonate groupCalcium concentrationChemistryGeneral EngineeringPH effectsPartition functionsIonic channelsIon equilibriumReversible dissociationChemical physicsFunctional groupsThermodynamicsDesalination membranesIon bindingPorosityDissociationBiophysical chemistryDissociation equilibriaInorganic chemistrychemistry.chemical_elementWater filtrationCalciumIonNernst-Planck equationsApplied potentialsIon bindingCarboxylationPhosphonic acidsComputer SimulationCarboxylateParticle SizeControlled drug releaseCurrent voltage curveIonsBinding SitesFixed charge densityPH sensitiveCarboxylic acidsDesalinationPhosphonic acid groupsPoly acidsElectric ConductivityCarboxylic acid groupsFixed ChargesNanostructuresCell membranesCurrent-voltage curvesModels ChemicalQuantum theoryFISICA APLICADACalciumBiological ion channelsCalcium bindingIonic currentCytologyPore wallStatistical mechanicsAcidsACS nano
researchProduct

Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy

2021

We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs, Grothendieck's dessins d'enfants, strictly monotone Hurwitz numbers, or lattice points in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full partition function of this Dubrovin--Frobenius manifold is a tau-function of the extended nonlinear Schr\"odinger hierarchy, an extension of a particular rational reduction of the Kadomtsev--Petviashvili hierarchy. We prove a version of their conjecture specializing the Givental--M…

High Energy Physics - TheoryPure mathematicsRank (linear algebra)FOS: Physical sciences[MATH] Mathematics [math]01 natural sciencesCatalan numberMathematics::Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]KP hierarchy0103 physical sciences[NLIN] Nonlinear Sciences [physics][NLIN]Nonlinear Sciences [physics][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematics[MATH]Mathematics [math]Mathematics::Symplectic GeometryMathematical PhysicsMathematicsHirota equationsPartition function (quantum field theory)ConjectureNonlinear Sciences - Exactly Solvable and Integrable SystemsHierarchy (mathematics)010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)16. Peace & justiceLax equationsManifoldModuli spaceMonotone polygonNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics - Theory (hep-th)010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Exactly Solvable and Integrable Systems (nlin.SI)Catalan numbersFrobenius manifoldsLetters in Mathematical Physics
researchProduct