Search results for "path"

showing 10 items of 15327 documents

The Role of Phospholipase D and MAPK Signaling Cascades in the Adaption of Lichen Microalgae to Desiccation: Changes in Membrane Lipids and Phosphopr…

2016

Classically, lichen phycobionts are described as poikilohydric organisms able to undergo desiccation due to the constitutive presence of molecular protection mechanisms. However, little is known about the induction of cellular responses in lichen phycobionts during drying. The analysis of the lipid composition of the desiccated lichen microalga Asterochloris erici revealed the unusual accumulation of highly polar lipids (oligogalactolipids and phosphatidylinositol), which prevents the fusion of membranes during stress, but also the active degradation of cone-shaped lipids (monogalactosyldiacylglycerol and phosphatidylethanolamine) to stabilize membranes in desiccated cells. The level of pho…

0106 biological sciences0301 basic medicineMAPK/ERK pathwayLichensPhysiologyMAP Kinase Signaling SystemMembrane lipidsPlant ScienceBiology01 natural sciencesDesiccation toleranceDephosphorylation03 medical and health scienceschemistry.chemical_compoundMembrane LipidsChlorophytaOsmotic PressureMicroalgaePhospholipase DPhosphorylationProtein kinase ADehydrationPhospholipase DKinaseCell BiologyGeneral MedicinePhosphatidic acidPhosphoproteinsAdaptation Physiological030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlantcell physiology
researchProduct

Twig and Shoot Dieback of Citrus, a New Disease Caused by Colletotrichum Species

2021

(1) Background: This study was aimed at identifying the Colletotrichum species associated with twig and shoot dieback of citrus, a new syndrome occurring in the Mediterranean region and also reported as emerging in California. (2) Methods: Overall, 119 Colletotrichum isolates were characterized. They were recovered from symptomatic trees of sweet orange, mandarin and mandarin-like fruits during a survey of citrus groves in Albania and Sicily (southern Italy). (3) Results: The isolates were grouped into two distinct morphotypes. The grouping of isolates was supported by phylogenetic sequence analysis of two genetic markers, the internal transcribed spacer regions of rDNA (ITS) and β-tubulin …

0106 biological sciences0301 basic medicineMediterranean climateTUB2Orange (colour)01 natural sciencesArticlecitrusTwigNecrosis03 medical and health sciencesColletotrichumpathogenicityInternal transcribed spacerlcsh:QH301-705.5Phylogeny<i>Colletotrichum</i> karstiiPlant DiseasesMyceliumbiologyInoculationColletotrichum karstii;fungifood and beveragesGeneral Medicine030108 mycology & parasitologybiology.organism_classificationColletotrichum gloeosporioidesColletotrichum karstiiColletotrichum gloeosporioides;Plant LeavesHorticultureColletotrichumlcsh:Biology (General)Genetic marker<i>Colletotrichum</i> gloeosporioidesShootDNA IntergenicITS010606 plant biology & botanyCells
researchProduct

The bacterial microbiome of meloidogyne-based disease complex in coffee and tomato

2020

The Meloidogyne-based disease complexes (MDCs) are caused by the interaction of different root-knot nematode species and phytopathogenic fungi. These complexes are devastating several important crops worldwide including tomato and coffee. Despite their relevance, little is known about the role of the bacterial communities in the MDCs. In this study 16s rDNA gene sequencing was used to analyze the bacterial microbiome associated with healthy and infested roots, as well with females and eggs of Meloidogyne enterolobii and M. paranaensis, the causal agents of MDC in tomato and coffee, respectively. Each MDC pathosystems displayed a specific taxonomic diversity and relative abundances constitut…

0106 biological sciences0301 basic medicineMeloidogynePathologie végétalePlant Sciencelcsh:Plant culture01 natural scienceshttp://aims.fao.org/aos/agrovoc/c_479203 medical and health sciencesMaladie des planteshttp://aims.fao.org/aos/agrovoc/c_5962Meloidogyne paranaensisSolanum lycopersicumcorky rootAlteromonadalesBotanyhttp://aims.fao.org/aos/agrovoc/c_1721lcsh:SB1-1110MicrobiomeH20 - Maladies des planteshttp://aims.fao.org/aos/agrovoc/c_4475Original Researchfunctional profilehttp://aims.fao.org/aos/agrovoc/c_4729biologypathobiomeP34 - Biologie du solfood and beveragesNocardiaCoffea arabicabiology.organism_classification16S ribosomal RNABacillalesMeloidogyne enterolobiiBurkholderiales030104 developmental biologyNematodehttp://aims.fao.org/aos/agrovoc/c_5974Meloidogyne enterolobii010606 plant biology & botany
researchProduct

Species Richness, rRNA Gene Abundance, and Seasonal Dynamics of Airborne Plant-Pathogenic Oomycetes

2018

Oomycetes, also named Peronosporomycetes, are one of the most important and widespread groups of plant pathogens, leading to significant losses in the global agricultural productivity. They have been studied extensively in ground water, soil, and host plants, but their atmospheric transport vector is not well characterized. In this study, the occurrence of airborne Oomycetes was investigated by Sanger sequencing and quantitative PCR of coarse and fine aerosol particle samples (57 filter pairs) collected over a 1-year period (2006–2007) and full seasonal cycle in Mainz, Germany. In coarse particulate matter, we found 55 different hypothetical species (OTUs), of which 54 were plant pathogens …

0106 biological sciences0301 basic medicineMicrobiology (medical)Sanger sequencingSecondary infectionlcsh:QR1-50201 natural sciencesMicrobiologylcsh:Microbiology03 medical and health sciencesseasonal distributionqPCR analysisBotanyOriginal ResearchPeronosporomycetesbiologyCorrectionairborne OomycetesRibosomal RNAParticulatesbiology.organism_classificationplant pathogenmeteorological parameter030104 developmental biologyHyaloperonosporaPeronosporaPhytophthoraSpecies richnessHypothetical species010606 plant biology & botanyFrontiers in Microbiology
researchProduct

2021

Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; cl…

0106 biological sciences0301 basic medicineMicrobiology (medical)VirulenceDisease010603 evolutionary biology01 natural sciencesBiochemistryMicrobiology03 medical and health sciencesAquaculturePharmacology (medical)General Pharmacology Toxicology and PharmaceuticsPathogen2. Zero hungerbiologyEcologybusiness.industryTransmission (medicine)Host (biology)biology.organism_classification030104 developmental biologyInfectious DiseasesAgricultureFlavobacterium columnarebusinessAntibiotics
researchProduct

Benefits of immune protection versus immunopathology costs: a synthesis from cytokine KO models.

2017

5 pages; International audience; The inflammatory response can produce damage to host tissues and in several infectious diseases the most severe symptoms are due to immunopathology rather than a direct effect of pathogen multiplication. One hypothesis for the persistence of inflammatory damage posits that the benefits of protection towards infection outweigh the costs. We used data on knocked-out (KO) cytokine models [and the corresponding wild-type (WT) controls] to test this hypothesis. We computed differences in pathogen load and host survival between WT and KO and divided them by the WT values. Using this ratio provides an internal control for variation in pathogen species, host strain,…

0106 biological sciences0301 basic medicineMicrobiology (medical)medicine.medical_treatmentVirulenceInflammationImmunopathologyBiologyCommunicable Diseases010603 evolutionary biology01 natural sciencesMicrobiologyPersistence (computer science)Gene Knockout Techniques03 medical and health sciencesImmunopathologyGeneticsmedicine[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsHumans[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyMolecular BiologyPathogenCytokineEcology Evolution Behavior and SystematicsInflammationVirulenceHost (biology)Immune protectionHost survivalComputational BiologyPathogen loadDisease Models Animal030104 developmental biologyInfectious DiseasesCytokineHost-Pathogen InteractionsImmunologyCytokinesmedicine.symptom
researchProduct

Responses of marine mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) after infection with the pathogen Vibrio splendidus

2019

International audience; Bivalve molluscs possess effective cellular and humoral defence mechanisms against bacterial infection. Although the immune responses of mussels to challenge with pathogenic vibrios have been largely investigated, the effects at the site of injection at the tissue level have not been so far evaluated. To this aim, mussels Mytilus galloprovincialis were herein in vivo challenged with Vibrio splendidus to assess the responses induced in hemolymph and posterior adductor muscle (PAM), being the site of bacterial infection. The number of living intra-hemocyte bacteria increased after the first hour post-injection (p.i.), suggesting the occurrence of an intense phagocytosi…

0106 biological sciences0301 basic medicineMuscle tissueanimal structuresPhysiologyHealth Toxicology and Mutagenesis[SDV]Life Sciences [q-bio]Osmotic balanceBivalve molluscs; Cell turnover; Hemolymph; In vivo infection; Osmotic balance; Pathogenic bacteria; Posterior adductor muscleToxicologymedicine.disease_cause01 natural sciencesBiochemistry[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunityMicrobiologyIn vivo infection03 medical and health sciencesImmune systemHemolymphHemolymphmedicineAnimals14. Life underwaterBivalve molluscVibrioMytilusbiology010604 marine biology & hydrobiologyfungiPathogenic bacteriaCell BiologyGeneral MedicineMusselWater-Electrolyte Balancebiology.organism_classificationBivalviaBivalve molluscsPosterior adductor muscleMytilus030104 developmental biologymedicine.anatomical_structureMytilidae13. Climate actionPathogenic bacteriaHost-Pathogen InteractionsCell turnover[SDV.IMM]Life Sciences [q-bio]/Immunology
researchProduct

Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development.

2021

[EN] Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Ph…

0106 biological sciences0301 basic medicineMutantArabidopsisPlant ScienceGenes Plant01 natural sciencesGene Expression Regulation EnzymologicSerine03 medical and health scienceschemistry.chemical_compoundSulfur assimilationBiosynthesisGene Expression Regulation PlantArabidopsisGeneticsSerinePhosphoglycerate dehydrogenaseGenePhosphoglycerate DehydrogenasePSPbiologyGeneral MedicinePhosphorylated pathway of serine biosynthesisbiology.organism_classificationBiosynthetic Pathways030104 developmental biologyPGDHBiochemistrychemistryEssential geneFISIOLOGIA VEGETALPhosphoserine phosphataseAgronomy and Crop Science010606 plant biology & botanyPlant science : an international journal of experimental plant biology
researchProduct

Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

2018

[EN] Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionall…

0106 biological sciences0301 basic medicineMutantchemistry.chemical_elementPlant Sciencelcsh:Plant culture01 natural sciencesTCP1603 medical and health sciencesTranscriptional regulationGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARExtracellularmedicinelcsh:SB1-1110COPT3transcriptional regulationheavy metalsTranscription factorSecretory pathwayOriginal ResearchCopper transportmedicine.diseaseCopperCell biology030104 developmental biologyHeavy metalschemistrycopper transportCopper deficiencyIntracellular010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Defense Priming in Nicotiana tabacum Accelerates and Amplifies ‘New’ C/N Fluxes in Key Amino Acid Biosynthetic Pathways

2020

: In the struggle to survive herbivory by leaf-feeding insects, plants employ multiple strategies to defend themselves. One mechanism by which plants increase resistance is by intensifying their responsiveness in the production of certain defense agents to create a rapid response. Known as defense priming, this action can accelerate and amplify responses of metabolic pathways, providing plants with long-lasting resistance, especially when faced with waves of attack. In the work presented, short-lived radiotracers of carbon administered as 11CO2 and nitrogen administered as 13NH3 were applied in Nicotiana tabacum, to examine the temporal changes in &lsquo

0106 biological sciences0301 basic medicineNicotiana tabacumamino acid metabolismPlant Science01 natural sciencesplant insect herbivorySerine03 medical and health scienceschemistry.chemical_compoundBiosynthesislcsh:Botanynitrogen-13Shikimate pathwaycarbon-11Secondary metabolismEcology Evolution Behavior and SystematicsX-ray fluorescence imagingchemistry.chemical_classificationEcologybiologydefense primingJasmonic acidfungifood and beveragesbiology.organism_classificationlcsh:QK1-989Amino acidMetabolic pathway030104 developmental biologychemistryBiochemistryisotope ratio analysis010606 plant biology & botanyPlants
researchProduct