Search results for "path"

showing 10 items of 15327 documents

The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism

2021

Abstract Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot b…

0106 biological sciences0301 basic medicineNitrogenPhysiologyNitrogen assimilationCell RespirationArabidopsisPlant DevelopmentPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundPlant Growth RegulatorsBiosynthesisGlutamine synthetaseSerineGeneticsPhosphorylationResearch ArticlesCell Proliferationchemistry.chemical_classificationbiologyChemistryMetabolismBiosynthetic PathwaysAmino acid030104 developmental biologyBiochemistrybiology.proteinPhotorespirationGlutamine oxoglutarate aminotransferase010606 plant biology & botanyPlant Physiology
researchProduct

Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways

2015

The red palm weevil (RPW; Rhynchophorus ferrugineus) is spreading worldwide and severely harming many palm species. However, most studies on RPW focused on insect biology, and little information is available about the plant response to the attack. In the present experiment, we used metabolomics to study the alteration of the leaf metabolome of Phoenix canariensis at initial (1st stage) or advanced (2nd stage) attack by RPW compared with healthy (unattacked) plants. The leaf metabolome significantly varied among treatments. At the 1st stage of attack, plants showed a reprogramming of carbohydrate and organic acid metabolism; in contrast, peptides and lipid metabolic pathways underwent more c…

0106 biological sciences0301 basic medicinePhenylpropanoidWeevilfood and beveragesPlant ScienceBiologybiology.organism_classification01 natural sciencesBiochemistryGeneral Biochemistry Genetics and Molecular BiologyTerpenoid03 medical and health sciencesMetabolic pathwayRhynchophorus030104 developmental biologyMetabolomicsBiochemistryPhoenix canariensisBotanyMetabolome010606 plant biology & botanyJournal of Integrative Plant Biology
researchProduct

Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier

2016

In contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found …

0106 biological sciences0301 basic medicinePhysiologyPhenylalanineGreen Fluorescent ProteinsMutantArabidopsisPlant ScienceProtein Sorting SignalsEndoplasmic ReticulumEndocytosis01 natural sciencesClathrin03 medical and health sciencesCytosolGeneticsGuanine Nucleotide Exchange FactorsSecretory pathwaybiologyArabidopsis ProteinsEndoplasmic reticulumMembrane Transport ProteinsSignal transducing adaptor proteinArticlesPlants Genetically ModifiedClathrinEndocytosisAdaptor Protein Complex mu SubunitsTransport proteinCell biologyProtein Transport030104 developmental biologyProtein Sorting SignalsMutationbiology.protein010606 plant biology & botanyPlant Physiology
researchProduct

Multilocus sequence typing analysis of Italian Xanthomonas campestris pv. campestris strains suggests the evolution of local endemic populations of t…

2019

Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in Brassicaceae. It is widespread in Italy and severe outbreaks occur under conditions that favour disease development. In this study a multilocus sequence typing approach (MLST) based on the partial sequence of seven loci was applied to a selection of strains representative of the main areas of cultivation and hosts. The aim was to investigate whether the long tradition of brassica crops in Italy has influenced the evolution of different Xcc populations. All loci were polymorphic; 14 allelic profiles were identified of which 13 were unique to Italian strains. Based on the seven loci, the most common genotype withi…

0106 biological sciences0301 basic medicinePlant ScienceBiologyHorticulture01 natural sciencesXanthomonas campestris pv. campestris03 medical and health sciencesRace (biology)PhylogeneticsGenotypeGeneticsrace designationXanthomonas campestris pv. campestrisEndemismPathogenGeneticspopulation diversityblack rot of Brassicaceae MLST population diversity race designation Xanthomonas campestris pv. campestris Agronomy and Crop Science Genetics Plant Science HorticultureBlack rot of Brassicaeae Xanthomonas campestris pv. campestris MLST race designation population diversity.Outbreakbiology.organism_classificationBlack rot of Brassicaeae030104 developmental biologyMultilocus sequence typingblack rot of BrassicaceaeAgronomy and Crop ScienceXanthomonas campestris pv. campestri010606 plant biology & botanyMLST
researchProduct

Loss of

2020

The early secretory pathway involves bidirectional transport between the endoplasmic reticulum (ER) and the Golgi apparatus and is mediated by coat protein complex I (COPI)-coated and coat protein complex II (COPII)-coated vesicles. COPII vesicles are involved in ER to Golgi transport meanwhile COPI vesicles mediate intra-Golgi transport and retrograde transport from the Golgi apparatus to the ER. The key component of COPI vesicles is the coatomer complex, that is composed of seven subunits (α/β/β'/γ/δ/ε/ζ). In Arabidopsis two genes coding for the β-COP subunit have been identified, which are the result of recent tandem duplication. Here we have used a loss-of-function approach to study the…

0106 biological sciences0301 basic medicineProtein subunitArabidopsisPlant Sciencelcsh:Plant culture01 natural sciences03 medical and health sciencessymbols.namesakelcsh:SB1-1110coat protein II (COPII)Plantes Cèl·lules i teixitsCOPIICreixement (Plantes)Secretory pathwayOriginal Researchsalt stressChemistryEndoplasmic reticulumVesiclecoat protein I (COPI)plant growthCOPIGolgi apparatusCell biology030104 developmental biologyCoatomerβ-COPGolgi apparatussymbols010606 plant biology & botanyFrontiers in plant science
researchProduct

Molecular signatures of silencing suppression degeneracy from a complex RNA virus

2021

As genomic architectures become more complex, they begin to accumulate degenerate and redundant elements. However, analyses of the molecular mechanisms underlying these genetic architecture features remain scarce, especially in compact but sufficiently complex genomes. In the present study, we followed a proteomic approach together with a computational network analysis to reveal molecular signatures of protein function degeneracy from a plant virus (as virus-host protein-protein interactions). We employed affinity purification coupled to mass spectrometry to detect several host factors interacting with two proteins of Citrus tristeza virus (p20 and p25) that are known to function as RNA sil…

0106 biological sciences0301 basic medicineProteomicsCitrusInteraction NetworksPathogenesisPlant Sciencemedicine.disease_causePathology and Laboratory Medicine01 natural sciencesInteractomeBiochemistryBimolecular fluorescence complementationRNA interferenceRNA silencing supressorsCitrus tristeza virusMedicine and Health SciencesDegeneracy (biology)Protein Interaction MapsBiology (General)H20 Plant diseasesPlant ProteinsEcologybiologyPlant virusesEukaryotaArgonautePlantsSmall interfering RNANucleic acidsRNA silencingComputational Theory and MathematicsGenetic interferenceExperimental Organism SystemsModeling and SimulationProteomeArgonaute ProteinsHost-Pathogen InteractionsRNA ViralEpigeneticsResearch ArticleClosterovirusRNA virusViral proteinQH301-705.5Arabidopsis ThalianaPlant PathogensComputational biologyGenome ViralBrassicaResearch and Analysis MethodsModels BiologicalPlant Viral Pathogens03 medical and health sciencesCellular and Molecular NeuroscienceViral ProteinsModel OrganismsPlant and Algal ModelsTobaccomedicineGeneticsGenomesNon-coding RNAProtein InteractionsMolecular signaturesMolecular BiologyEcology Evolution Behavior and SystematicsPlant DiseasesHost Microbial InteractionsBiology and life sciencesMass spectrometryOrganismsComputational BiologyProteinsRNA virusPlant Pathologybiology.organism_classificationGene regulationRepressor Proteins030104 developmental biologyU30 Research methodsAnimal StudiesRNAGene expression010606 plant biology & botanyF30 Plant genetics and breeding
researchProduct

Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae).

2016

Evolution of C3–C4 intermediate and C4 lineages are resolved in Salsoleae (Chenopodiaceae), and a model for structural and biochemical changes for the evolution of the Salsoloid form of C4 is considered.

0106 biological sciences0301 basic medicineRecurrent evolutionPhysiologyBlotting WesternPlant ScienceChenopodiaceaewestern blotsPhotosynthesis01 natural sciences03 medical and health sciencesMicroscopy Electron TransmissionBotanyPhotosynthesisChenopodiaceaeCladePhylogenyCarbon IsotopesbiologyPhylogenetic treeC2 pathway15. Life on landCarbon Dioxidebiology.organism_classificationGlycine Dehydrogenase (Decarboxylating)CO2 compensation pointPhenotypePlant Leaves030104 developmental biologyCompensation pointC3–C4 intermediatesMolecular phylogeneticsTEMleaf anatomyAncestral character state reconstruction010606 plant biology & botanyResearch PaperJournal of experimental botany
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

Borrelia afzeliialters reproductive success in a rodent host

2018

The impact of a pathogen on the fitness and behaviour of its natural host depends upon the host–parasite relationship in a given set of environmental conditions. Here, we experimentally investigated the effects ofBorrelia afzelii,one of the aetiological agents of Lyme disease in humans, on the fitness of its natural rodent host, the bank vole (Myodes glareolus), in semi-natural conditions with two contrasting host population densities. Our results show thatB. afzeliican modify the reproductive success and spacing behaviour of its rodent host, whereas host survival was not affected. Infection impaired the breeding probability of large bank voles. Reproduction was hastened in infected females…

0106 biological sciences0301 basic medicineRodentmetsämyyräOffspringHost–pathogen interactionZoologyzoonoosithost-pathogen interactionBorrelia afzeliimedicine.disease_cause010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesbiology.animalMyodes glareolusisäntäeläimetnatural hostmedicineMatingGeneral Environmental ScienceEcologyGeneral Immunology and MicrobiologybiologyReproductive successHost (biology)General Medicinezoonosislisääntyminenbiology.organism_classificationfitnessBorrelia-bakteeritBank vole030104 developmental biologyBorrelia afzeliita1181host–pathogen interactionGeneral Agricultural and Biological SciencesProceedings of the Royal Society B: Biological Sciences
researchProduct

Molecular Responses to Small Regulating Molecules against Huanglongbing Disease

2016

Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. T…

0106 biological sciences0301 basic medicineSucroseLeavesCitruslcsh:MedicineGene ExpressionSecondary MetabolismPlant ScienceDisaccharidesBiochemistry01 natural sciencesStarchesGene Expression Regulation PlantINFECTIONMedicine and Health SciencesInnatePlant HormonesAmino Acidslcsh:ScienceImmune ResponseGENE-EXPRESSIONMultidisciplinaryNONHOST RESISTANCEbiologyOrganic CompoundsPlant BiochemistryPlant AnatomyChemistryPhenotypeBiochemistryDEFENSE RESPONSESCANDIDATUS-LIBERIBACTER-ASIATICUS; ARABIDOPSIS-THALIANA; NONHOST RESISTANCE; DEFENSE RESPONSES; CITRUS-SINENSIS; GENE-EXPRESSION; INFECTION; PLANTS; IDENTIFICATION; TRANSCRIPTOMEPhysical SciencesHost-Pathogen InteractionsCarbohydrate MetabolismSucrose synthaseAtrazineGibberellinBasic Amino AcidsStarch synthaseSystemic acquired resistanceResearch ArticleCITRUS-SINENSISGeneral Science & TechnologyPhysiologicalImmunologyCarbohydratesCarbohydrate metabolismStressArginine03 medical and health sciencesStress PhysiologicalSettore AGR/07 - Genetica AgrariaGeneticsPLANTSTRANSCRIPTOMESecondary metabolismGenePlant DiseasesIDENTIFICATIONGene Expression Profilinglcsh:ROrganic ChemistryImmunityChemical CompoundsBiology and Life SciencesProteinsPlantBiotic stressCANDIDATUS-LIBERIBACTER-ASIATICUSHormonesGibberellinsImmunity InnateMetabolism030104 developmental biologyGene Expression RegulationARABIDOPSIS-THALIANAbiology.proteinlcsh:Q010606 plant biology & botanyPLOS ONE
researchProduct