Search results for "pattern recognition"

showing 10 items of 2301 documents

Constructing Interpretable Classifiers to Diagnose Gastric Cancer Based on Breath Tests

2017

Quick, inexpensive and accurate diagnosis of gastric cancer is a necessity, but at this moment the available methods do not hold up. One of the most promising possibilities is breath test analysis, which is quick, relatively inexpensive and comfortable to the person tested. However, this method has not yet been well explored. Therefore in this article the authors propose using transparent classification models to explain diagnostic patterns and knowledge, which is acquired in the process. The models are induced using decision tree classification algorithms and RIPPER algorithm for decision rule induction. The accuracy of these models is compared to neural network accuracy.

Artificial neural networkComputer sciencebusiness.industryDecision treePattern recognition02 engineering and technologyDecision rule021001 nanoscience & nanotechnologyMachine learningcomputer.software_genre03 medical and health sciencesStatistical classification0302 clinical medicine030220 oncology & carcinogenesisGeneral Earth and Planetary SciencesArtificial intelligence0210 nano-technologybusinesscomputerGeneral Environmental ScienceProcedia Computer Science
researchProduct

Adaptive Continuous Feature Binarization for Tsetlin Machines Applied to Forecasting Dengue Incidences in the Philippines

2020

The Tsetlin Machine (TM) is a recent interpretable machine learning algorithm that requires relatively modest computational power, yet attains competitive accuracy in several benchmarks. TMs are inherently binary; however, many machine learning problems are continuous. While binarization of continuous data through brute-force thresholding has yielded promising accuracy, such an approach is computationally expensive and hinders extrapolation. In this paper, we address these limitations by standardizing features to support scale shifts in the transition from training data to real-world operation, typical for e.g. forecasting. For scalability, we employ sampling to reduce the number of binariz…

Artificial neural networkComputer sciencebusiness.industryDeep learning0206 medical engineeringDecision treeSampling (statistics)02 engineering and technologyMachine learningcomputer.software_genreThresholdingSupport vector machinePattern recognition (psychology)0202 electrical engineering electronic engineering information engineeringFeature (machine learning)020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer020602 bioinformatics2020 IEEE Symposium Series on Computational Intelligence (SSCI)
researchProduct

Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI Using Deep Convolutional Networks

2021

In this paper, we propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI). The proposed framework addresses two tasks. The first task is automatic detection of myocardial contours, the infarcted area, the no-reflow area, and the left ventricular cavity from a short-axis DE-MRI series. It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity. The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region. The segmented …

Artificial neural networkComputer sciencebusiness.industryDeep learningPattern recognitionDelayed enhancementmedicine.diseaseSupport vector machineClinical informationcardiovascular systemmedicineLeft ventricular cavitySegmentationcardiovascular diseasesMyocardial infarctionArtificial intelligencebusiness
researchProduct

DATE FRUIT SORTING USING APPEARANCE-BASED INFORMATION AND NEURAL NETWORK CLASSIFIER

2014

Artificial neural networkComputer sciencebusiness.industryPrincipal component analysisSortingAppearance basedPattern recognitionArtificial intelligenceHorticulturebusinessNeural network classifierDate FruitActa Horticulturae
researchProduct

Why Cortices ? Neural Computation in the Vertebrate Visual System

1989

We propose three high level structural principles of neural networks in the vertebrate visual cortex and discuss some of their computational implications for early vision: a) Lamination, average axonal and dendritic domains, and intrinsic feedback determine the spatio-temporal interactions in cortical processing. Possible applications of the resulting filters include continuous motion perception and the direct measurement of high-level parameters of image flow, b) Retinotopic mapping is an emergent property of massively parallel connections. With a local intrinsic operation in the target area, mapping combines to a space-variant image processing system as would be useful in the analysis of …

Artificial neural networkComputer sciencebusiness.industryProperty (programming)Optical flowPattern recognitionImage processingVisual cortexmedicine.anatomical_structureModels of neural computationmedicineMotion perceptionArtificial intelligencebusinessMassively parallel
researchProduct

Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images

2021

Abstract Losses of electricity production in photovoltaic systems are mainly caused by the presence of faults that affect the efficiency of the systems. The identification of any overheating in a photovoltaic module, through the thermographic non-destructive test, may be essential to maintain the correct functioning of the photovoltaic system quickly and cost-effectively, without interrupting its normal operation. This work proposes a system for the automatic classification of thermographic images using a convolutional neural network, developed via open-source libraries. To reduce image noise, various pre-processing strategies were evaluated, including normalization and homogenization of pi…

Artificial neural networkContextual image classificationRenewable Energy Sustainability and the EnvironmentComputer sciencebusiness.industry020209 energyDeep learningEnergy Engineering and Power TechnologyPattern recognitionSobel operatorAutomatic Fault recognition Convolutional Neural Network Photovoltaics TensorFlow Infrared Thermography02 engineering and technologyPerceptronConvolutional neural networkThresholdingThermographic inspectionFuel Technology020401 chemical engineeringNuclear Energy and Engineering0202 electrical engineering electronic engineering information engineeringArtificial intelligence0204 chemical engineeringbusinessEnergy Conversion and Management
researchProduct

Pose classification using support vector machines

2000

In this work a software architecture is presented for the automatic recognition of human arm poses. Our research has been carried on in the robotics framework. A mobile robot that has to find its path to the goal in a partially structured environment can be trained by a human operator to follow particular routes in order to perform its task quickly. The system is able to recognize and classify some different poses of the operator's arms as direction commands like "turn-left", "turn-right", "go-straight", and so on. A binary image of the operator silhouette is obtained from the gray-level input. Next, a slice centered on the silhouette itself is processed in order to compute the eigenvalues …

Artificial neural networkCovariance matrixbusiness.industryComputer scienceBinary imagePattern recognitionMobile robotSilhouetteSupport vector machineOperator (computer programming)Gesture recognitionComputer visionArtificial intelligencebusinessEigenvalues and eigenvectorsProceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium
researchProduct

Identification of the Parameters of Reduced Vector Preisach Model by Neural Networks

2008

This paper presents a methodology for identifying reduced vector Preisach model parameters by using neural networks. The neural network used is a multiplayer perceptron trained with the Levenberg-Marquadt training algorithm. The network is trained by some hysteresis data, which are generated by using reduced vector Preisach model with preassigned parameters. It is shown how a properly trained network is able to find the parameters needed to best fit a magnetization hysteresis curve.

Artificial neural networkEstimation theoryComputer sciencebusiness.industryDifferential equationComputer Science::Neural and Evolutionary ComputationPattern recognitionMagnetic hysteresisPerceptronMagnetic susceptibilityElectronic Optical and Magnetic MaterialsIdentification (information)MagnetizationHysteresisMultilayer perceptronArtificial intelligenceElectrical and Electronic EngineeringbusinessSaturation (magnetic)
researchProduct

Hybrid architecture for shape reconstruction and object recognition

1998

The proposed architecture is aimed to recover 3-D- shape information from gray-level images of a scene; to build a geometric representation of the scene in terms of geometric primitives; and to reason about the scene. The novelty of the architecture is in fact the integration of different approaches: symbolic reasoning techniques typical of knowledge representation in artificial intelligence, algorithmic capabilities typical of artificial vision schemes, and analogue techniques typical of artificial neural networks. Experimental results obtained by means of an implemented version of the proposed architecture acting on real scene images are reported to illustrate the system capabilities.

Artificial neural networkKnowledge representation and reasoningComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONCognitive neuroscience of visual object recognitionImage processingTheoretical Computer ScienceHuman-Computer InteractionArtificial IntelligenceComputer Science::Computer Vision and Pattern RecognitionPattern recognition (psychology)Systems architectureComputer visionGeometric primitiveArtificial intelligenceGraphicsbusinessSoftware
researchProduct

Ventricular fibrillation detection from ECG surface electrodes using different filtering techniques, window length and artificial neural networks

2017

Medical personnel face many difficulties when diagnosing ventricular fibrillation (VF). Its correct diagnosis allows to decide the right medical treatment and, therefore, it is essential to tell it apart adequately from ventricular tachycardia (VT) and other arrhythmias. If the required therapy is not appropriate, the personnel could cause serious injuries or even induce VF. In this work, a diagnosis automatic system for the detection of VF through feature extraction was developed. To verify the validity of this method, an Artificial Neural Network (ANN) classifier was used. The ECG signals used were obtained from the MIT-BIH Malignant Ventricular Arrhythmia Database and AHA (2000 series) d…

Artificial neural networkMedical treatmentmedicine.diagnostic_testComputer sciencebusiness.industryFeature extractionPattern recognitionmedicine.diseaseVentricular tachycardiaVentricular fibrillationmedicineArtificial intelligenceEcg signalbusinessElectrocardiographyClassifier (UML)2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT)
researchProduct