Search results for "patterning"

showing 10 items of 70 documents

Idiopathic infantile asymmetry, proposal of a measurement scale

2004

Abstract To evaluate the development of idiopathic infantile asymmetry and the efficacy of therapeutic interventions, spinal scoliosis can be quantified on the basis of radiographs. For obvious reasons, use of this technique is limited. Here we present a clinical method to describe and quantify infantile asymmetry. For item selection, spontaneous movements (SMs), reactive movements (RMs) and length differences were video recorded in 30 infants (median age 10 weeks, range 6–16) with variable degrees of asymmetry. Within these three categories, reactive movements elicited by head turns to the right and left side in the prone and supine position emerged as reliable parameters reflecting trunk …

Malemedicine.medical_specialtySupine positionIntraclass correlationSpontaneous movementsMovementVideo RecordingScoliosisCronbach's alphaConsistency (statistics)medicineHumansDiagnostic Techniques and ProceduresBody PatterningObserver VariationOrthodonticsMovement Disordersbusiness.industryInfantReproducibility of ResultsObstetrics and GynecologyBody movementmedicine.diseaseTrunkSurgeryScoliosisResearch DesignPediatrics Perinatology and Child HealthFemalebusinessEarly Human Development
researchProduct

Faceting and structural anisotropy of nanopatterned CdO(110) layers

2005

CdO(110) layers with a self-organized surface structure have been grown on (10math0) sapphire (m plane) substrates by metal-organic vapor phase epitaxy. The epitaxial relationships between layer and substrate have been determined and a crystallographic model that accounts for the CdO in-plane orientation, which results in a reduced lattice mismatch when the CdO[001] direction is perpendicular to the sapphire c axis, has been proposed. Although the measured lattice parameters indicate that the layers are almost fully relaxed, an anisotropic mosaicity is detected with symmetrical rocking curves attaining minimum values when measured along the CdO[math10] direction. The layer morphology consis…

Materials scienceGeneral Physics and AstronomySemiconductor growthEpitaxyMosaicityVapour phase epitaxial growthCadmium compound ; Semiconductor epitaxial layers ; II-VI semiconductors ; Semiconductor growth ; Vapour phase epitaxial growth ; MOCVD ; Nanopatterning ; Self-assembly ; Lattice constants ; Mosaic structure ; Surface morphologyLattice constant:FÍSICA [UNESCO]PerpendicularMetalorganic vapour phase epitaxyAnisotropyCondensed matter physicsUNESCO::FÍSICASemiconductor epitaxial layersLattice constantsNanopatterningII-VI semiconductorsSelf-assemblyFacetingCrystallographyCadmium compoundMOCVDSapphireSurface morphologyMosaic structure
researchProduct

Inorganic Materials and Ionic Liquids: Large-scale Nanopatterning of Single Proteins used as Carriers of Magnetic Nanoparticles (Adv. Mater. 5/2010)

2010

Materials scienceMechanical EngineeringNanoparticleNanotechnologyProtein patterningSoft lithographychemistry.chemical_compoundNanolithographychemistryMechanics of MaterialsIonic liquidMagnetic nanoparticlesGeneral Materials ScienceInorganic materialsAdvanced Materials
researchProduct

Laser Beam Lithography For 3-D Surface Patterning

1993

A low power laser processing unit, for microlithographic applications on non-planar surfaces, is described. By combining proper laser beam handling, micropositioning, software control and surface coating techniques, a 5-axis robotic system for laser writing has been set up. Light from a He-Cd laser source is fiber-delivered to a writing head, which moves around a resist coated solid object. After exposure, traditional wet processing can be applied. The unit is capable of patterning metal films deposited on samples up to a size of 50x50x100 mm, with 5 micrometer spatial resolution. An application in 3-D circuit fabrication is presented.

Materials sciencebusiness.industryExtreme ultraviolet lithographyLaserLaser writing 3-D Laser LithographySettore ING-INF/01 - Elettronicalaw.inventionSurface coatingResistlawMultiple patterningOptoelectronicsPhotolithographybusinessNext-generation lithographyMaskless lithography
researchProduct

Electrical connections and driving electronics for piezo-actuated x-ray thin glass optics

2016

Use of thin glass modular optics is a technology currently under study to build light, low cost, large area X-ray telescopes for high energy astrophysics space missions. The angular resolution of such telescopes is limited by local deviations from the ideal shape of the mirrors. One possible strategy to improve it consists in actively correcting the mirror profile by gluing thin ceramic piezo-electric actuators on the back of the glasses. A large number of actuators, however, requires several electrical connections to drive them with the different needed voltages. We have developed a process for depositing conductive paths directly on the back of non-planar thin foil mirrors by means of a p…

Materials sciencebusiness.industryX-ray telescopeModular designSettore ING-INF/01 - ElettronicaActive X-ray optics thin glass optics piezoelectric actuators piezoelectric multichannel drivers interconnections patterning X-ray telescope mirrors.Settore FIS/05 - Astronomia E AstrofisicaOpticsvisual_artvisual_art.visual_art_mediumOptoelectronicsElectronicsCeramicThin filmbusinessActuatorElectrical conductorVoltage
researchProduct

From Seeds to Islands: Growth of Oxidized Graphene by Two-Photon Oxidation

2016

The mechanism of two-photon induced oxidation of single-layer graphene on Si/SiO2 substrates is studied by atomic force microscopy (AFM) and Raman microspectroscopy and imaging. AFM imaging of areas oxidized by using a tightly focused femtosecond laser beam shows that oxidation is not homogeneous but oxidized and nonoxidized graphene segregate into separate domains over the whole irradiated area. The oxidation process starts from point-like “seeds” which grow into islands finally coalescing together. The size of islands before coalescence is 30–40 nm, and the density of the islands is on the order of 1011 cm–2. Raman spectroscopy reveals growth of the D/G band ratio along the oxidation. Sha…

Materials scienceoxidationAnalytical chemistry02 engineering and technology010402 general chemistryPhotochemistry01 natural scienceslaw.inventionsymbols.namesakeTwo-photon excitation microscopylawPhenomenological modelIrradiationPhysical and Theoretical Chemistryta116Coalescence (physics)patterningta114Graphenegraphene021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyHomogeneousFemtosecondsymbols0210 nano-technologyRaman spectroscopyThe Journal of Physical Chemistry C
researchProduct

Segment polarity and DV patterning gene expression reveals segmental organization of theDrosophilabrain

2003

The insect brain is traditionally subdivided into the trito-, deuto- and protocerebrum. However, both the neuromeric status and the course of the borders between these regions are unclear. The Drosophila embryonic brain develops from the procephalic neurogenic region of the ectoderm, which gives rise to a bilaterally symmetrical array of about 100 neuronal precursor cells, called neuroblasts. Based on a detailed description of the spatiotemporal development of the entire population of embryonic brain neuroblasts, we carried out a comprehensive analysis of the expression of segment polarity genes (engrailed, wingless, hedgehog, gooseberry distal,mirror) and DV patterning genes (muscle segmen…

Models Anatomicanimal structuresBiologyNeuroblastGenes ReporterEctodermMorphogenesisAnimalsDrosophila ProteinsCompartment (development)Molecular BiologyIn Situ HybridizationBody PatterningNeuroectodermfungiGenes HomeoboxBrainGene Expression Regulation DevelopmentalAnatomyNeuromereengrailedDrosophila melanogasterSegment polarity geneembryonic structuresHomeoboxNeuroscienceGanglion mother cellDevelopmental BiologyDevelopment
researchProduct

Nanostructuring thin Au films on transparent conductive oxide substrates

2013

Fabrication processes of Au nanostructures on indium-tin-oxide (ITO) surface by simple, versatile, and low-cost bottom-up methodologies are investigated in this work. A first methodology exploits the patterning effects induced by nanosecond laser irradiations on thin Au films deposited on ITO surface. We show that after the laser irradiations, the Au film break-up into nanoclusters whose mean size and surface density are tunable by the laser fluence. A second methodology exploits, instead, the patterning effects of standard furnace thermal processes on the Au film deposited on the ITO. We observe, in this case, a peculiar shape evolution from pre-formed nanoclusters during the Au deposition…

NanoclusterLaser annealingMaterials scienceNanostructureFabricationNanoringPatterning effectGold depositAnnealing (metallurgy)NanotechnologyFluenceSettore ING-INF/01 - Elettronicalaw.inventionNanoclusterslawThermalDeposition stageAuGeneral Materials ScienceNanostructuringTransparent conducting filmDepositMechanical EngineeringNanoringsTransparent conductive oxides Conductive filmAnnealing temperatureCondensed Matter PhysicsLaserAu; ITO; NanostructuringFurnace annealingNanostructuresNanostructured materialFabrication proceMechanics of MaterialsOxide films GoldITO
researchProduct

Ems and Nkx6 are central regulators in dorsoventral patterning of the Drosophila brain

2009

In central nervous system development, the identity of neural stem cells (neuroblasts) critically depends on the precise spatial patterning of the neuroectoderm in the dorsoventral (DV) axis. Here, we uncover a novel gene regulatory network underlying DV patterning in the Drosophila brain, and show that the cephalic gap gene empty spiracles (ems) and the Nk6 homeobox gene (Nkx6) encode key regulators. The regulatory network implicates novel interactions between these and the evolutionarily conserved homeobox genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh). We show that Msh cross-repressively interacts with Nkx6 to sust…

Nervous systemEmbryo Nonmammaliananimal structuresBiologyNeuroblastmedicineAnimalsDrosophila ProteinsMolecular BiologyGap geneBody PatterningHomeodomain ProteinsGeneticsRegulation of gene expressionNeuroectodermNeural tubeBrainGene Expression Regulation DevelopmentalCell biologymedicine.anatomical_structureVentral nerve cordembryonic structuresHomeoboxDrosophilaTranscription FactorsDevelopmental BiologyDevelopment
researchProduct

The columnar gene vnd is required for tritocerebral neuromere formation during embryonic brain development of Drosophila.

2006

International audience; In Drosophila, evolutionarily conserved transcription factors are required for the specification of neural lineages along the anteroposterior and dorsoventral axes, such as Hox genes for anteroposterior and columnar genes for dorsoventral patterning. In this report, we analyse the role of the columnar patterning gene ventral nervous system defective (vnd) in embryonic brain development. Expression of vnd is observed in specific subsets of cells in all brain neuromeres. Loss-of-function analysis focussed on the tritocerebrum shows that inactivation of vnd results in regionalized axonal patterning defects, which are comparable with the brain phenotype caused by mutatio…

Nervous systemMutantApoptosis0302 clinical medicineMESH: Gene Expression Regulation DevelopmentalDrosophila ProteinsMESH: AnimalsAxonHox geneMESH: MelatoninGenetics0303 health sciencesMESH: Pineal GlandBrainGene Expression Regulation DevelopmentalMESH: Transcription FactorsNeuromerePhenotypeBiological EvolutionCell biologymedicine.anatomical_structureDrosophila melanogasterPhenotypeMESH: Photic StimulationMESH: Body PatterningMESH: MutationMESH: Drosophila ProteinsBiologyMESH: PhenotypeMESH: Drosophila melanogaster03 medical and health sciencesMESH: BrainNeuroblastMESH: EvolutionMESH: Homeodomain ProteinsmedicineAnimalsMESH: Circadian RhythmMolecular Biology030304 developmental biologyBody PatterningHomeodomain ProteinsMESH: HumansMESH: ApoptosisEmbryogenesis[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH: LightMutationMESH: SerotoninMESH: Seasons030217 neurology & neurosurgeryDevelopmental BiologyTranscription Factors
researchProduct