Search results for "photoconductivity"
showing 10 items of 50 documents
Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg
2019
Abstract The results of the investigation of thermostimulated luminescence (TSL) and photoconductivity (PC) of the X-ray irradiated undoped and Mg2+ doped β-Ga2O3 single crystals are presented. Three low-temperature peaks at 116 K, 147 K and 165 K are observed on the TSL glow curves of undoped crystals. The high-temperature TSL peaks at 354 K and 385 K are dominant in Mg2+ doped crystals. The correlation between doping with Mg2+ ions and the local energy levels of the intrinsic structural defects of β-Ga2O3, which are responsible for the TSL peaks and PC, is established. The nature of TSL peaks and the appropriate photoconductivity excitation bands are discussed.
Luminescence dynamics of hybrid ZnO nanowire/CdSe quantum dot structures
2016
Colloidal CdSe quantum dots (QDs) functionalized with different organic linker molecules are attached to ZnO nanowires (NWs) to investigate the electron transfer dynamics between dots and wires. After linking the quantum dots to the nanowires, the photo-induced electron transfer (PET) from the QDs into the NWs becomes visible in the PL transients by a decrease of dot luminescence decay time. The different recombination paths inside the QDs and the PET process are discussed in the framework of a rate equation model. Photoconductivity studies confirm the electron transfer by demonstrating a strong enhancement of the wire photocurrent under light irradiation into the dot transition. (© 2016 WI…
Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase
2019
In this Communication, we report the first synthesis of structurally well-defined graphene nanoribbons (GNRs) functionalized with dendritic polymers. The resultant GNRs possess grafting ratios of 0.59-0.68 for the dendrons of different generations. Remarkably, the precise 3D branched conformation of the grafted dendrons affords the GNRs unprecedented 1D supramolecular self-assembly behavior in tetrahydrofuran (THF), yielding nanowires, helices and nanofibers depending on the dimension of the dendrons. The GNR superstructures in THF exhibit near-infrared absorption with maxima between 650 and 700 nm, yielding an optical bandgap of 1.2-1.3 eV. Ultrafast photoconductivity analyses unveil that …
Photoconductivity in the columnar phases of a glassy discotic twin
1995
Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons.
2017
Recent advances in bottom-up synthesis of atomically defined graphene nanoribbons (GNRs) with various microstructures and properties have demonstrated their promise in electronic and optoelectronic devices. Here we synthesized N = 9 armchair graphene nanoribbons (9-AGNRs) with a low optical band gap of ∼1.0 eV and extended absorption into the infrared range by an efficient chemical vapor deposition process. Time-resolved terahertz spectroscopy was employed to characterize the photoconductivity in 9-AGNRs and revealed their high intrinsic charge-carrier mobility of approximately 350 cm2·V-1·s-1.
Photoconductivity in Discotic Liquid Crystals: A New Class of High-Mobility Materials
1994
Abstract Using a time-of-flight technique, different transport mechanisms, deep trapping, multiple shallow trapping and Gaussian transport, can be observed in the different temperature and phase regions of the liquidcrystalline (LC) photoconductor hexapentyloxytriphenylene (HPT). Transient photocurrents and carrier mobilities for various temperatures, electric fields, and sample histories were examined. The ideal intrinsic Gaussian transport, observed for holes in the mesophase, puts HPT into a new class of highmobility materials with both hole mobilities on the order of 1.10−3cm2/Vs and a steplike current decay. These features result from the fact that there is obviously neither a position…
Behaviour of Nb2O5/PPy contacts: From Schottky barriers to p-n junctions
2009
In this work, a study of the photoelectrochemical responses of Nb O /PPy contacts fabricated in both organic 2 5 and aqueous solutions is performed. From the comparison between the experimental data of PPy photodeposited on Nb O in organic and in aqueous solutions, it is evident that the medium used for the photodeposition 2 5 influences the absorption coefficient, the band gap and flat band potential values.
Transient photoconductivity in a discotic hexagonal plastic crystal
1996
Surface Coatings Based on Polysilsesquioxanes: Solution-Processible Smooth Hole-Injection Layers for Optoelectronic Applications
2009
Optoelectronic devices usually consist of a transparent conductive oxide (TCO) as one electrode. Interfacial engineering between the TCO electrode and the overlying organic layers is an important method for tuning device performance. We introduce poly(methylsilsesquioxane)-poly(N,N-di-4-methylphenylamino styrene) (PMSSQ-PTPA) as a potential hole-injection layer forming material. Spin-coating and thermally induced crosslinking resulted in an effective planarization of the anode interface. HOMO level (-5.6 eV) and hole mobility (1 × 10(-6) cm(2) · Vs(-1) ) of the film on ITO substrates were measured by cyclovoltammetry and time-of-flight measurement demonstrating the hole injection capabili…
Discotic Liquid Crystals - A New Class of Fast Photoconductors
1993
We showed for the first time that discotic liquid crystals are well suited for a new class of fast photoconducting materials. Due to their spontaneous orientation and their dynamical fluctuations in the mesophase, they show exceptionally high mobilities of 1·10−3 cm2/Vs, about two to three orders of magnitude higher than those obtained for conventional amorphous polymers. Further on, the Gaussian transport (for holes in the mesophase) is remarkable, which is characterized by the existence of a conduction band and the absence of trapping states. In contrast, the charge carrier transport in amorphous photoconductors is generally trap-dominated which limits technical properties, leading to low…