Search results for "photoprotection"
showing 10 items of 17 documents
Photoprotection dynamics observed at leaf level from fast temporal reflectance changes
2018
Vegetation dynamically reacts to the available photosynthetically active radiation (PAR) by adjusting the photosynthetic apparatus to either a light harvesting or a photoprotective modus. When activating the photoprotection mechanism, either minor or major pigment-protein interactions may occur at the leaf level, resulting in different light absorption and consequently reflectance intensities. The reflectance changes were measured during sudden illumination transients designed to provoke fast adaptation to high irradiance. Different spectral reflectance change features were observed during different stages of photoprotection activation, extending over part of the visible spectral range (i.e…
UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack
2019
International audience; Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photoprotection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiälä Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperature…
2020
Fucoxanthin and its derivatives are the main light-harvesting pigments in the photosynthetic apparatus of many chromalveolate algae and represent the most abundant carotenoids in the world's oceans, thus being major facilitators of marine primary production. A central step in fucoxanthin biosynthesis that has been elusive so far is the conversion of violaxanthin to neoxanthin. Here, we show that in chromalveolates, this reaction is catalyzed by violaxanthin de-epoxidase-like (VDL) proteins and that VDL is also involved in the formation of other light-harvesting carotenoids such as peridinin or vaucheriaxanthin. VDL is closely related to the photoprotective enzyme violaxanthin de-epoxidase t…
Role of Thylakoid ATP/ADP Carrier in Photoinhibition and Photoprotection of Photosystem II in Arabidopsis
2010
L'article original est publié par The American Society of Plant Biologists; International audience; The chloroplast thylakoid ATP/ADP carrier (TAAC) belongs to the mitochondrial carrier superfamily and supplies the thylakoid lumen with stromal ATP in exchange for ADP. Here, we investigate the physiological consequences of TAAC depletion in Arabidopsis (Arabidopsis thaliana). We show that the deficiency of TAAC in two T-DNA insertion lines does not modify the chloroplast ultrastructure, the relative amounts of photosynthetic proteins, the pigment composition, and the photosynthetic activity. Under growth light conditions, the mutants initially displayed similar shoot weight, but lower when r…
A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosy…
2017
The epoxy-xanthophylls antheraxanthin and violaxanthin are key precursors of light-harvesting carotenoids and participate in the photoprotective xanthophyll cycle. Thus, the invention of zeaxanthin epoxidase (ZEP) catalyzing their formation from zeaxanthin has been a fundamental step in the evolution of photosynthetic eukaryotes. ZEP genes have only been found in Viridiplantae and chromalveolate algae with secondary plastids of red algal ancestry, suggesting that ZEP evolved in the Viridiplantae and spread to chromalveolates by lateral gene transfer. By searching publicly available sequence data from eleven red algae covering all currently recognized red algal classes we identified ZEP cand…
The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cyc…
2005
The present study focuses on the regulation of diatoxanthin (Dtx) epoxidation in the diadinoxanthin (Ddx) cycle containing algae Phaeodactylum tricornutum, Thalassiosira pseudonana, Cyclotella meneghiniana and Prymnesium parvum and its significance for the control of the photosystem II (PS II) antenna function. Our data show that Dtx epoxidase can exhibit extremely high activities when algal cells are transferred from high light (HL) to low light (LL). Under HL conditions, Dtx epoxidation is strongly inhibited by the light-driven proton gradient. Uncoupling of the cells during HL illumination restores the high epoxidation rates observed during LL. In Ddx cycle containing algae, non-photoche…
Photostability assessment of natural pyrethrins using halloysite nanotube carrier system
2022
Natural pyrethrins are one of the most used pesticides and insect repellents employed for domestic or agronomic use. However, they are highly hydrophobic and suffer from insolubility in water media and ready decomposition by photochemical, and oxidative actions. These aspects hamper their long-term storage and applicability. Herein, we report the synthesis and characterization of a nanomaterial based on the loading of pyrethrum extract (PE) into natural, low-cost, and eco-compatible halloysite nanotubes (Hal). The Hal/PE nanomaterial was thoroughly characterized, and the morphology was imaged by TEM and SEM investigations. Release experiments showed a slow release of pyrethrins from the car…
Supplementary Ultraviolet-B Radiation Induces a Rapid Reversal of the Diadinoxanthin Cycle in the Strong Light-Exposed DiatomPhaeodactylum tricornutu…
2002
AbstractA treatment of the diatom Phaeodactylum tricornutum with high light (HL) in the visible range led to the conversion of diadinoxanthin (Dd) to diatoxanthin (Dt). In a following treatment with HL plus supplementary ultraviolet (UV)-B, the Dt was rapidly epoxidized to Dd. Photosynthesis of the cells was inhibited under HL + UV-B. This is accounted for by direct damage by UV-B and damage because of the UV-B-induced reversal of the Dd cycle and the associated loss of photoprotection. The reversal of the Dd cycle by UV-B was faster in the presence of dithiothreitol, an inhibitor of the Dd de-epoxidase. Our results imply that the reversal of the Dd cycle by HL + UV-B was caused by an incre…
Photoprotection and photoreception of intraocular lenses under xenon and white LED illumination.
2016
Objective. To analyze the photoprotection and phototransmission that various intraocular lenses (10Ls) provide under the illumination of a xenon (Xe) lamp and white LEDs (light emitting diode). Methods. The spectral transmission curves of six representative 10Ls were measured using a Perkin-Elmer Lambda 35 UV/VIS spectrometer. Various filtering simulations were performed using a Xe lamp and white LEDs. The spectral emissions of these lamps were measured with an ILT-950 spectroradiometer. Results. The 10Ls analyzed primarily show transmission of nearly 100% in the visible spectrum. In the ultraviolet (UV) region, the filters incorporated in the various 10Ls did not filter equally, and some o…
Acclimation Potential to High Irradiance of Two Cultivars of Watermelon
2000
The acclimation potential to high irradiance of two cultivars of watermelon, Reina de Corazones and Toro, calculated as the ratio of sun vs. shade activities of O2− and H2O2 scavenging enzymes and non-radiative energy dissipation, was similar. However, Reina de Corazones exhibited a higher capacity in absolute terms for photoprotection (harmless dissipation of absorbed light energy at PS 2 and ascorbate and O2− and H2O2 scavenging enzymes) suggesting a larger resistance of this cultivar to high irradiance. This could be seen as smaller decreases in fruit productivity and in lower oxidative injury as probed by malondialdehyde content in sun plants of Reina de Corazones than in Toro plants. A…