Search results for "physical chemistry"
showing 10 items of 1199 documents
Oxygen and vacancy defects in silicon. A quantum mechanical characterization through the IR and Raman spectra.
2021
The Infrared (IR) and Raman spectra of various defects in silicon, containing both oxygen atoms (in the interstitial position, Oi) and a vacancy, are computed at the quantum mechanical level by using a periodic supercell approach based on a hybrid functional (B3LYP), an all-electron Gaussian-type basis set, and the Crystal code. The first of these defects is VO: the oxygen atom, twofold coordinated, saturates the unpaired electrons of two of the four carbon atoms on first neighbors of the vacancy. The two remaining unpaired electrons on the first neighbors of the vacancy can combine to give a triplet (Sz = 1) or a singlet (Sz = 0) state; both states are investigated for the neutral form of …
The heat of transfer in a chemical reaction at equilibrium.
2007
International audience; We study a reacting mixture (2F $ F2) in a temperature gradient. We had previously used boundary-driven non-equilibrium molecular dynamics (NEMD) simulations to study this system, and found that the reaction was close to local chemical equilibrium in temperature gradients up to 1012 K/m. Using the condition of local chemical equilibrium, we show that the heat of transfer of the reacting mixture is equal to minus the enthalpy of the reaction. The fact that the sign of the heat of transfer is determined by the type of reaction adds insight to the discussion of the origin of the sign
Interstitial carbon defects in silicon. A quantum mechanical characterization through the infrared and Raman spectra.
2021
The infrared (IR) and Raman spectra of eight substitutional carbon defects in silicon are computed at the quantum mechanical level by using a periodic supercell approach based on hybrid functionals, an all electron Gaussian type basis set and the CRYSTAL code. The single substitutional C s case and its combination with a vacancy (C s V and C s SiV) are considered first. The progressive saturation of the four bonds of a Si atom with C is then examined. The last set of defects consists of a chain of adjacent carbon atoms C s i , with i = 1-3. The simple substitutional case, C s , is the common first member of the three sets. All these defects show important, very characteristic features in th…
Co-doping with boron and nitrogen impurities in T-carbon
2020
Previously, Ren et al. [Chem. Phys. 518, 69–73, 2019] reported the failure of Boron-Nitrogen (B-N) co-doping as inter B-N bond in T-carbon. In present work, a B-N atom pair is introduced in T-carbon as p-n co-dopant to substitute two carbon atoms in the same carbon tetrahedron and form an intra B-N bond. The stability of this doping system is verified from energy, lattice dynamic, and thermodynamic aspects. According to our B3PW calculations, B-N impurities in this situation can reduce the band gap of T-carbon from 2.95 eV to 2.55 eV, making this material to be a promising photocatalyst. Through the study of its transport properties, we can also conclude that B-N co-doping cannot improve th…
Searching for new borondifluoride β -diketonate complexes with enhanced absorption/emission properties using ab initio tools
2018
International audience; The rational design of fluorophores with enhanced absorption/emission properties increasingly relies on theoretical chemistry, as new ab initio methods suited for electronically excited-states reduce the gap between calculated and experimental results. In this framework, Time-Dependent Density Functional Theory (TD-DFT) emerges as an attractive option as it often provides accurate results at a moderate computational cost. Here, we perform a TD-DFT-SOS-CIS(D) study of a panel of 18 borondifluoride β-diketonate complexes that can be classified as: curcuminoids, hemicurcuminoids, their ethynylene analogues, and 2′-hydroxy-chalcones. First, we reproduce the experimental …
Comparison of conventional and dense dispersion managed systems for 160 Gb/s transmissions
2006
International audience; In this paper, we carry out, by numerical simulations and experiments on recirculating loop.. a comparative analysis of the performances of two types of dispersion management techniques for 160 Gb/s transmission systems, which correspond to short-period dispersion maps (dense dispersion management) and long-period dispersion maps (conventional dispersion management), respectively. We show that the dense dispersion management system suffers performance degradation by the effects of polarization mode dispersion (PMD) and fiber splicing losses, in a more dramatic manner than in the system with long-period map. We experimentally find that, at constant PMD, dense dispersi…
Dispersion and Stabilization of Exfoliated Graphene in Ionic Liquids.
2019
The liquid-phase exfoliation of graphite is one of the most promising methods to increase production and commercial availability of graphene. Because ionic liquids can be easily obtained with chosen molecular structures and tuneable physicochemical properties, they can be use as media to optimise the exfoliation of graphite. The under- standing of the interactions involved between graphite and various chemical functions in the solvent ions will be helpful to find liquids capable of dissociating and stabilising im- portant quantities of large graphene layers. After a step of sonication, as a mechanical precursor, samples of suspended exfoliated graphene in different ionic liquids have been c…
Molecular Selectivity of CO–N 2 Mixed Hydrates: Raman Spectroscopy and GCMC Studies
2020
This paper reports a novel quantitative investigation concerning the CO selectivity properties for mixed CO–N2 hydrates. The study was developed by combining Raman scattering experiments and grand ...
A Mechanical–Electrochemical Approach for the Determination of Precursor Sites for Pitting Corrosion at the Microscale
2006
International audience; The influence of metallurgical defects and residual surface stresses generated by polishing on the pitting susceptibility of duplex stainless steels was studied by combining macro- and microelectrochemical measurements with thermal-mechanical simulation and metallography tests. It has been shown that pits initiate in both phases at metallurgical point defects (such as oxide inclusions in the ferrite and dislocation lines in the austenite). By contrast, the surface stress state was the driving force for pit initiation along the austenite/ferrite interface. Experiments at the macroscale revealed that this process represents about 40% of the total number of pits observe…
Influence of the focusing effect on XAFS in ReO3, WO3−x and FeF3
1995
Abstract The role of the focusing effect in the formation of X-ray absorption fine structure (XAFS) is considered for ReO3, non-stoichiometric tungsten oxides WO3−x and FeF3 having the perovskite-type structure. Two cases are mainly discussed: (1) an admixture of rhenium and tungsten L2-edge XAFS in ReO3 and WO3−x crystals to the one above rhenium and tungsten L1-edge and (2) high-order superfocusing effect in Fe0F1Fe2F3Fe4 atomic chain in iron K-edge XAFS of FeF3 which is analysed using an ab initio multiple-scattering approach.