Search results for "pigments."

showing 10 items of 133 documents

Ocre, hematites y óxido de hierro: el problema terminológico = Ochre, Hematite and Iron Oxid: The Terminological Issue

2016

Los óxidos de hierro son prácticamente omnipresentes al analizar contextos, no solo referentes al arte rupestre, sino también en relación con toda una serie de actividades que podríamos considerar cotidianas en ambientes prehistóricos. Sin embargo, su estudio sistemático no ha comenzado hasta tiempos muy recientes. Fruto de ello, podría decirse que una parte de la literatura arqueológica no especializada en el campo de la pigmentología muestra, en ocasiones, cierta inexactitud terminológica. Con este documento pretendemos, a través de un análisis tanto de su funcionamiento, como de las propiedades geoquímicas y mineralógicas del ocre, la hematites y los propios óxidos de hierro, exponer la …

010506 paleontologyHistorylcsh:Prehistoric archaeology01 natural sciencesTerminologyPrehistoryocreterminologyIron oxide0601 history and archaeologylcsh:CC1-960terminología0105 earth and related environmental sciences060102 archaeologyochre06 humanities and the artsArchaeologylcsh:Auxiliary sciences of historylcsh:Clcsh:ArchaeologyHematitespigments.Rock artlcsh:GN700-890pigmentos =Hematiteóxido de hierroEspacio Tiempo y Forma. Serie I, Prehistoria y Arqueología
researchProduct

In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS–NIR slow-induced conformational pigment bed changes

2019

Abstract Regulated heat dissipation under excessive light comprises a complexity of mechanisms, whereby the supramolecular light-harvesting pigment–protein complex (LHC) shifts state from light harvesting towards heat dissipation, quenching the excess of photo-induced excitation energy in a non-photochemical way. Based on whole-leaf spectroscopy measuring upward and downward spectral radiance fluxes, we studied spectrally contiguous (hyperspectral) transient time series of absorbance A(λ,t) and passively induced chlorophyll fluorescence F(λ,t) dynamics of intact leaves in the visible and near-infrared wavelengths (VIS–NIR, 400–800 nm) after sudden strong natural-like illumination exposure. …

0106 biological sciences0301 basic medicineChlorophyllMaterials sciencePassive chlorophyll a fluorescencePigment–protein dynamicsLightHyperspectral remote sensingAnalytical chemistryJuglansPlant Science01 natural sciencesBiochemistryEnergy quenchingFluorescenceAbsorbance03 medical and health sciencesTransmittanceFiber Optic TechnologySpectroscopyChlorophyll fluorescencechemistry.chemical_classificationSpectroscopy Near-InfraredAbsorbed photosynthetic active radiation (APAR)Non-photochemical quenching (NPQ)Cell BiologyGeneral MedicineEquipment DesignPigments BiologicalPhotochemical ProcessesCarotenoidsPlant LeavesWavelength030104 developmental biologychemistryXanthophyllRadianceOriginal ArticleAbsorbance shiftMorusControlled heat dissipation010606 plant biology & botanyPhotosynthesis Research
researchProduct

Carotenoids and Some Other Pigments from Fungi and Yeasts †

2021

Carotenoids are an essential group of compounds that may be obtained by microbiological synthesis. They are instrumental in various areas of industry, medicine, agriculture, and ecology. The increase of carotenoids’ demand at the global market is now essential. At the moment, the production of natural carotenoids is more expensive than obtaining their synthetic forms, but several new approaches/directions on how to decrease this difference were developed during the last decades. This review briefly describes the information accumulated until now about the beneficial effects of carotenoids on human health protection, their possible application in the treatments of various diseases, and their…

0106 biological sciences0301 basic medicineEndocrinology Diabetes and Metabolismpigmentslcsh:QR1-502macromolecular substancesReviewBiologyyeast01 natural sciencesBiochemistrylcsh:Microbiology03 medical and health sciencesHuman health010608 biotechnologyMolecular BiologyBeneficial effectsCarotenoidchemistry.chemical_classificationbusiness.industrycarotenoidsfood and beveragesBiotechnology030104 developmental biologychemistryAgriculturebusinessMetabolites
researchProduct

Flashing light emitting diodes (LEDs) induce proteins, polyunsaturated fatty acids and pigments in three microalgae

2020

As the periodic emission of light pulses by light emitting diodes (LEDs) is known to stimulate growth or induce high value biocompounds in microalgae, this flashing light regime was tested on growth and biochemical composition of the microalgae Nannochloropsis gaditana, Koliella antarctica and Tetraselmis chui. At low flashing light frequencies (e.g., 5 and 50 Hz, Duty cycle = 0.05), a strain-dependent growth inhibition and an accumulation of protein, polyunsaturated fatty acids, chlorophyll or carotenoids (lutein, β-carotene, violaxanthin and neoxanthin) was observed. In addition, a 4-day application of low-frequency flashing light to concentrated cultures increased productivities of eicos…

0106 biological sciences0301 basic medicinePigmentsLuteinBio Process EngineeringTotal lipidsSettore ING-IND/25 - Impianti ChimiciBioengineering01 natural sciencesApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compoundPigment:Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Plantefysiologi: 492 [VDP]NeoxanthinPulsed lightChlorophytaVDP::Teknologi: 500::Bioteknologi: 590010608 biotechnologyVDP::Technology: 500::Biotechnology: 590MicroalgaeFood scienceBiomassCarotenoidVLAGchemistry.chemical_classificationDuty cycleDuty cycle Pigments PUFA Pulsed light Total lipidsFatty Acidsfood and beveragesGeneral Medicine:Matematikk og Naturvitenskap: 400::Basale biofag: 470::Molekylærbiologi: 473 [VDP]Flashing030104 developmental biologychemistryChlorophyllvisual_artvisual_art.visual_art_mediumFatty Acids Unsaturated:Teknologi: 500::Bioteknologi: 590 [VDP]StramenopilesPUFABiotechnologyPolyunsaturated fatty acidViolaxanthin
researchProduct

Photoprotection dynamics observed at leaf level from fast temporal reflectance changes

2018

Vegetation dynamically reacts to the available photosynthetically active radiation (PAR) by adjusting the photosynthetic apparatus to either a light harvesting or a photoprotective modus. When activating the photoprotection mechanism, either minor or major pigment-protein interactions may occur at the leaf level, resulting in different light absorption and consequently reflectance intensities. The reflectance changes were measured during sudden illumination transients designed to provoke fast adaptation to high irradiance. Different spectral reflectance change features were observed during different stages of photoprotection activation, extending over part of the visible spectral range (i.e…

0106 biological sciences0301 basic medicinePigmentsMaterials sciencePhotochemical Reflectance IndexPhotosynthesis01 natural sciencesFluorescenceReflectivity03 medical and health sciencesWavelength030104 developmental biologyPhotosynthetically active radiationPhotoprotectionVegetaciósense organsAbsorption (electromagnetic radiation)Biological system010606 plant biology & botany
researchProduct

UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack

2019

International audience; Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photoprotection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiälä Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperature…

0106 biological sciences0301 basic medicineTime FactorsPhotoinhibitionBOREALPhysiologyPlant ScienceForests01 natural sciencesPlant EpidermisAnthocyaninsSoilFlavonolsLOW-TEMPERATURESnowPhotosynthesis1183 Plant biology microbiology virologychemistry.chemical_classificationspring dehardening.CLIMATE-CHANGEbiologyChemistryTemperatureUnderstoreyHorticultureLIGHTSeasonsVacciniumUltraviolet RaysGrowing seasonPhotosynthesisDWARF SHRUB03 medical and health sciencesLEAFPHOTOSYSTEM-IIGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyVaccinium vitis-idaeaFlavonoidsSpring dehardeningPhotoprotectionSpectral qualityPhotosystem II Protein ComplexPigments Biological15. Life on landEvergreenbiology.organism_classificationPhotosynthetic capacitySUB-ARCTIC HEATHPlant Leaves030104 developmental biology13. Climate actionPhotoprotectionWINTERB RADIATIONArctic browning010606 plant biology & botany
researchProduct

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

2010

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of…

0106 biological sciencesLineage (evolution)Molecular Sequence DataPhaeophyta01 natural sciencesGenomeEvolution Molecular03 medical and health sciencesAlgae[SDV.BDD] Life Sciences [q-bio]/Development BiologyBotanyBIOLOGIE CELLULAIREAnimals14. Life underwater[SDV.BDD]Life Sciences [q-bio]/Development Biologyflore marinePhylogenyOrganismComputingMilieux_MISCELLANEOUSphéophycées030304 developmental biology0303 health sciencesGenomeMultidisciplinarybiologyEctocarpus siliculosusAlgal ProteinsEukaryotaPigments BiologicalEctocarpus15. Life on landbiology.organism_classificationBiological EvolutionBrown algaeMulticellular organismEvolutionary biologyalgues brunesBiologieSignal Transduction010606 plant biology & botany
researchProduct

Relationship Between Functional Traits, Functional Types, and Habitat in Boreonemoral Bryophytes

2020

Abstract The aim of the present study was to determine a relationship between physiological traits and functional types of bryophytes from five boreonemoral habitats with a particular emphasis on discriminative ability of these traits. Sampling of 25 species was performed four times during one season. Water content, chlorophyll a fluorescence and photosynthetic pigment concentration were measured in field and water-equilibrated samples. Principal component analysis indicated the existence of an inverse relationship between concentration of pigments and water content. Linear discriminant analysis showed that relatively high mean predicted posterior probabilities of correct classification of …

0106 biological scienceshlorophyll a fluorescenceMultidisciplinaryGeneral interestEcologypigmentsScienceQwater conducting systemlife formsubstrate010603 evolutionary biology01 natural sciencesHabitatlife strategychlorophyll010606 plant biology & botanyProceedings of the Latvian Academy of Sciences. Section B, Natural Sciences
researchProduct

Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Ita…

2017

Abstract We investigated changes in the chemical characteristics of evaporating seawater under the influence of microbial activity by conducting geochemical analyses of the brines and evaporite sediments collected from solar salterns in Trapani, Italy. The microbial activity had a substantial effect on the carbonate system parameters. Dissolved inorganic carbon (DIC) was substantially removed from the brine during the course of evaporation from the seawater to the point where calcium carbonate precipitates, with an accompanying decrease in its carbon isotopic composition (δ 13 C DIC ) to as low as −10.6‰. Although the removal of DIC was due to calcium carbonate precipitation, photosynthesis…

0301 basic medicine010504 meteorology & atmospheric sciencesEvaporiteMineralogyengineering.materialBiogeochemical cycle01 natural sciences03 medical and health scienceschemistry.chemical_compoundMicrobial matGeochemistry and PetrologyCompound-specific isotope analysishemic and lymphatic diseasesDissolved organic carbonPhotosynthetic pigmentSulfate0105 earth and related environmental sciencesHypersaline environmentSalinity030104 developmental biologyCalcium carbonatechemistryBiogeochemical cycle; Carbonate system; Compound-specific isotope analysis; Hypersaline environment; Microbial mat; Photosynthetic pigments;Photosynthetic pigmentsengineeringHaliteCarbonateSeawaterCarbonate systemCompound-specific isotope analysiGeologycirculatory and respiratory physiology
researchProduct

N-retinylidene-N-retinylethanolamine adduct induces expression of chronic inflammation cytokines in retinal pigment epithelium cells

2021

Blindness due to photoreceptor degeneration is observed in both genetic and acquired eye disorders. Long blue light exposure can contribute to increase levels of oxidative compounds within the retinal pigment epithelium (RPE), enhancing risk of retinal damage. In retina, reactive oxygen species contribute to the activation of inflammatory cascade. If chronic, this inflammatory response can result in photoreceptor death. Therefore, we investigated the effects of the endogenous adduct N-retinylidene-N-retinylethanolamine (A2E) on RPE cells, in order to identify the most dysregulated cytokines and their related inflammatory pathways. RPE cells were exposed to A2E and blue light for 3h and 6h. …

0301 basic medicineRetinal degenerationCell SurvivalInflammationRetinal Pigment Epitheliummedicine.disease_causeA2ECell LineTranscriptomeRetinoids03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineExpression analysiSettore BIO/13 - Biologia ApplicatamedicineHumansInflammationchemistry.chemical_classificationRetinaReactive oxygen speciesRetinal pigment epitheliumSettore MED/30 - Malattie Apparato VisivoChemistryRetinal Degenerationmedicine.diseaseeye diseasesSensory SystemsCell biologyOphthalmology030104 developmental biologymedicine.anatomical_structureGene Expression RegulationChronic Disease030221 ophthalmology & optometryOxidative streCytokinesEye disorderRPEA2E; Expression analysis; Inflammation; Oxidative stress; RPE; Retinal degenerationsense organsmedicine.symptomReactive Oxygen SpeciesRetinal PigmentsOxidative stressSignal TransductionExperimental Eye Research
researchProduct