Search results for "polycyclic compounds"
showing 10 items of 373 documents
Synthesis and antiproliferative activity of new derivatives containing the polycyclic system 5,7:7,13-dimethanopyrazolo[3,4-b]pyrazolo[3’,4’:2,3]azep…
2013
The reaction under reflux between 1-phenyl-3-R-5-methylaminopyrazoles and 2,5-hexanedione lead to 5,7:7,13-dimethanopyrazolo[3,4-b]pyrazolo[3′,4′:2,3]azepino[4,5-f]azocine derivatives 3b–g. These unusual molecules show the structural complexity of many biologically active natural products and are endowed with the chemical diversity that is required in drug discovery. The compounds 3b,e were reduced by hydrogen in the presence of Palladium on activated charcoal to give the dihydro derivatives 5b,e. Compounds 3b–f and 5b,e were selected by the NCI to evaluate their in vitro antiproliferative activity against 60 human cell lines derived from nine clinically isolated cancer types (leukaemia, lu…
Synthesis and application of β-substituted Pauson-Khand adducts: trifluoromethyl as a removable steering group.
2013
The reaction between alkynes (I) and norbornadiene (II) affords the β-substituted Pauson—Khand adducts (III) as single regioisomers and the trifluoromethyl steering group can be easily removed in the presence of DBU and water.
Diversity-Oriented Synthesis of Polycyclic Scaffolds by Modification of an Anodic Product Derived from 2,4-Dimethylphenol
2010
Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release
2020
Doxorubicin (DOX) is a commonly employed drug in cancer chemotherapy, and its high DNA-binding affinity can be harnessed in preparing programmable DOX-loaded DNA nanostructures that can be further tailored for targeted delivery and therapeutics. Although DOX has been widely studied, the existing literature of promising DOX-loaded DNA nanocarriers remains limited and incoherent. A number of reports have over-looked the fundamentals of the DOX-DNA interaction, let alone the peculiarities arising from the complexity of the system as a whole. Here, based on an in-depth spectroscopic analysis, we characterize and optimize the DOX loading into different 2D and 3D scaffolded DNA origami nanostruct…
Concise asymmetric synthesis of Linezolid through catalyzed Henry reaction
2013
A new asymmetric synthesis of the antibiotic Linezolid was performed through a copper-catalyzed Henry reaction as the key step. The use of camphor-derived aminopyridine ligands helped to improve the yields of the chiral precursor and to obtain Linezolid in good overall yield and enantiomeric excess.
Eribulin (E) and capecitabine (C), a combined treatment schedule in elderly metastatic breast cancer (EMBC): Efficacy and safety evaluation (E&S).
2014
e20513 Background: E mesylate, a nontaxane microtubule dynamics inhibitor, was approved in the U.S in 2010 for the treatment of MBC who have previously received at least 2 MBC chemo regimens, inclu...
Nature of sterols affects plasma membrane behavior and yeast survival during dehydration.
2011
International audience; The plasma membrane (PM) is a main site of injury during osmotic perturbation. Sterols, major lipids of the PM structure in eukaryotes, are thought to play a role in ensuring the stability of the lipid bilayer during physicochemical perturbations. Here, we investigated the relationship between the nature of PM sterols and resistance of the yeast Saccharomyces cerevisiae to hyperosmotic treatment. We compared the responses to osmotic dehydration (viability, sterol quantification, ultrastructure, cell volume, and membrane permeability) in the wild-type (WT) strain and the ergosterol mutant erg6Δ strain. Our main results suggest that the nature of membrane sterols gover…
Oxidative C-N fusion of pyridinyl-substituted porphyrins.
2018
International audience; The mild (electro) chemical oxidation of pyridin-2-ylthio-meso substituted Ni(II) porphyrins affords C-N fused cationic and dicationic pyridinium-based derivatives. These porphyrins are fully characterized and the molecular structure of one of them was confirmed by X-ray crystallography. A mechanism for the intramolecular oxidative C-N coupling is proposed based on theoretical calculations and cyclic voltammetry analyses.
Significance of Various Enzymes in the Control of Mutagenic and Carcinogenic Metabolites Derived from Aromatic Structures
1984
One important early contribution to the control of chemical carcinogenesis is provided by the enzyme pattern responsible for the generation and disposition of reactive metabolites. Especially well studied is the important group of enzymes responsible for the control of reactive epoxides. Many natural as well as man-made foreign compounds, including Pharmaceuticals, possess olefinic or aromatic double bonds. Such compounds can be transformed to epoxides by microsomal monooxygenases present in very many mammalian organs. By virtue of their electrophilic reactivity such epoxides may spontaneously react with nucleophilic centers in the cell and thus covalently bind to DNA, RNA, and protein. Su…
Multiple activation pathways of benzene leading to products with varying genotoxic characteristics.
1989
Abstract Benzene and 13 potential metabolites were investigated for genotoxicity in Salmonella typhimurium and V79 Chinese hamster cells. In the presence of NADPH-fortified hepatic postmitochondrial fraction (S9 mix), benzene reverted his- S. typhimurium strains. The effect was strongest in strain TA1535. Among the potential metabolites, only the trans-1,2-dihydrodiol, in the presence of S9 mix, and the diol epoxides, in the presence and absence of S9 mix, proved mutagenic in this strain. The anti-diol epoxide was more potent than the syn-diastereomer. Both enantiomers of the anti-diastereomer showed similar activities. S9 mix did not appreciably affect the mutagenicity of the anti-diol epo…